Browsing by Subject "Oscillators"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access 1.06μm-1.35μm coherent pulse generation by a synchronously-pumped phosphosilicate Raman fiber laser(OSA, 2017) Elahi, Parviz; Makey, Ghaith; Turnalı, Ahmet; Tokel, Onur; İlday, Fatih ÖmerSummary form only given. Rare-earth-doped fiber lasers are attractive for microscopy and imaging applications and have developed over the past decades rapidly. They are unable to cover near-infra-red region entirely and therefore Raman and parametric process are promising for producing new wavelengths which are out of emission band of the current fiber lasers. Here, we demonstrate a synchronously-pumped Raman laser system for producing coherent signals spanning from 1.06 μm to 1.35 μm. The laser system comprises a passively-mode-locked oscillator, two stages of amplifier and a phosphosilicate Raman oscillator. The schematic of experimental setup is shown in Fig. 1(a). A mode locked oscillator operating at 37 MHz is using as a seed source. The output pulse duration and central wavelength are 6 ps and 1065 nm, respectively. 6 mW output from oscillator is launched to pre amplifier comprises 85-cm long Yb 401-PM pumped by a single mode diode through a PM wavelength division multiplexer (WDM). The power amplifier consists of a 3.5-m long Yb 1200-DC-PM with 6 μm core diameter and 125 μm cladding diameter pumped by a temperature stabilized, high power multimode diode laser via a multimode pump-signal combiner (MPC). A 30/70 coupler is employed for delivering pump signal at 1060 nm to the Raman oscillator comprises 4.2-m long ph-doped fiber. To synchronize pump and Raman and achieve coherent pulses, we adjust the length of cavity by a precise translation stage. By using proper filter inside the Raman cavity, different wavelengths are achieved.Item Open Access Compact 1.5-GHz intra-burst repetition rate Yb-doped all-PM-fiber laser system for ablation-cooled material removal(OSA, 2017) Akçaalan, Önder; Kalaycıoğlu, Hamit; Elahi, Parviz; Deminskyi, Petro; İlday, Fatih ÖmerSummary form only given. Femtosecond (fs) laser pulse sources have become increasingly popular in the last decade as a result of their practical features, such as insensitivity to environmental variations, versatile designs, high power outputs. However, much of the progress is with non-integrated specialty fibers, which involve some compromise on these practical features. Monolithic fiber chirped pulse amplification (CPA) systems are very attractive for industrial and scientific applications due to the features such as compactness, reliability and robustness. Although fs fiber laser systems are powerful technologies for material and tissue processing, limited ablation rates and high energy are drawbacks. Recently, we identified a new regime of laser-material interaction, ablation cooled material removal [1], where the repetition rate has to be high enough so that the targeted spot size cannot cool down substantially by heat conduction which scales down ablation threshold by several orders of magnitude and reduces thermal effects to the bulk of the target. Here, we demonstrate a compact all-PM-fiber laser amplifier system with an intra-burst repetition rate of 1.5 GHz able to produce bursts ranging from 20-ns to 65-ns duration with 20 μJ to 80 μJ total energy, respectively, and pulses with up to 1 μJ individual energy at burst repetition rates ranging from 25 kHz to 200 kHz (Fig. 1(a)). The seed signal is generated by a home-built all-normal dispersion oscillator with a spectrum centered at 1035 nm and 20-nm (FWHM), 100 mW output and 385 MHz repetition rate (Fig. 1(b)). After the oscillator, rest of the system is built of polarization maintaining (PM) components and a single-mode pre-amplifier controls both dispersion and nonlinearity in the amplifier system. The pulses are stretched with a 110 m-long fiber after this pre-amplifier and raised to a repetition rate of 1.5 GHz by a multiplier. The signal is amplified again by a second single-mode pre-amplifier before converted into burst-mode via an acousto-optic modulator (AOM). Finally, a forward-pumped double-clad power amplifier, built of PM 10/125 Yb 1200 DC (nLight) fiber and pumped by a 18-W wavelength stabilized diode, boosts the optical power. To compress the pulses, a pair of 1200 line/mm transmission gratings is preferred to denser gratings to limit third order dispersion (TOD). Further, fiber lengths are shortened as much as possible to minimize nonlinear effects including Raman scattering and thus the power conversion efficiency is relatively low, around 20% for the power amplifier. The autocorrelation measurement for the compressed pulses indicates a width of ~250 fs (Fig. 1(d)). The amplified output spectrum of FWHM of 14 nm is shown in (Fig. 1(c)).Item Open Access Development of high-beam quality high power Ytterbium-doped fiber lasers(2022-01) Midilli, YakupHigh power fiber laser (HPFL) systems have drawn considerable interest for the last decades in health, industry, and especially defense applications due to their compactness, robustness, and high directionality. In this respect, the defense industry is currently in high demand for HPFL systems in the naval, air force, and ground operations. As an example, they have been implemented to the battleship, armored vehicles, and most currently to the drones. Outstanding features of these systems allow us to utilize them in various applications; however, this great demand brings some shortcomings. For example, power scaling of highpower fiber lasers has been impeded by non-linear interactions such as Stimulated Raman Scattering (SRS) and Transverse Mode instability (TMI). Regarding these non-linear interactions, I have built high-power fiber laser oscillators and amplifier systems based on both commercial and homemade selffabricated Ytterbium (Yb)-doped large mode area active (LMA) fibers. Amplifier systems have been built based on the Master Oscillator Power Amplifier (MOPA) configuration, and the average power reaches up to 1 kW power level. Besides, the fiber oscillator system has been built with a power level up to 2 kW power level and M2 value of 1.2, the beam quality parameter of the fiber laser system. To understand and investigate the TMI effect on the fiber laser system and the fiber itself, I have intended to observe the intensity change of the probe lasers and the color center formation inside a homemade active fiber in the presence of TMI. Then, I have rebuilt the system to eliminate the TMI effect and repeated the same experiments to ensure that the TMI effect was responsible for the difference. For that purpose, I have installed a fiber laser system whose fiber has been coiled in a large bending diameter to ensure the existence of the TMI effect. I have utilized two different probe lasers with 645 nm and 520 nm central wavelengths, respectively. I have coupled these probe lasers to the fiber laser system via freespace arrangements. Afterward, I have repeated the same experiment only with the 520 nm probe laser ensuring the absence of the TMI effect by rebuilding the laser structure. Finally, I have taken data about the intensity change of the probe lasers for both cases and compared them. Having benefited from the experience of these studies, to suppress the SRS and TMI, I have fabricated a new type of generation Yb-doped LMA active fiber having an ultra-low numerical aperture (NA) around 0.034. Then I have built a monolithic MOPA system based on this fiber with a 1 m bending diameter. In addition, I have obtained 1 kW maximum power with a diffraction-limited beam quality with an M2 value of 1.16. Additionally, I have studied the side-pump combining technique, which is one of the mitigation methods for TMI. It allows us to pump the active fiber from both sides, thus decreasing the thermal load on fiber. Finally, I have studied the side pump combiner on both homemade self-fabricated Photonic Crystal Fiber (PCF) and ultra-low NA active fiber in a (1 + 1) x 1 pumping configuration with 95% and 89% pump coupling e ciencies, respectively.Item Open Access Dissipation in a finite-size bath(American Physical Society, 2011-07-18) Carcaterra, A.; Akay, A.We investigate the interaction of a particle with a finite-size bath represented by a set of independent linear oscillators with frequencies that fall within a finite bandwidth. We discover that when the oscillators have particular frequency distributions, the finite-size bath behaves much as an infinite-size bath exhibiting dissipation properties and thus allowing irreversible energy absorption from a particle immersed in it. We also present a reinterpretation of the Langevin equation using a perturbation approach in which the small parameter represents the inverse of the number of oscillators in the bath, elucidating the relationship between finite-size and infinite-size bath responses.Item Open Access Multimode pumping of optical parametric oscillators(Institute of Electrical and Electronics Engineers, 1996-02) Marshall, L. R.; Kaz, A.; Aytur, O.Calculations suggest that optical parametric oscillators (OPO's) can be efficiently pumped using multimode, divergent pump sources. The influence of pump beam divergence and mode structure upon OPO performance is measured for both noncritical phase-matching, and OPO's with walkoff. Multimode OPO pumping is shown to be efficient, provided appropriate nonlinear crystals and OPO cavities are employed; the nonlinear crystal must have sufficient angular acceptance to tolerate a divergent pump; the OPO cavity must support modes that match the divergence and spatial intensity characteristics of the pump, For low-order pump modes, the OPO can be made to match the mode of the pump. Higher order pump modes reduce the OPO efficiency, and cause a saturation of efficiency with increasing pump power. The efficiency is degraded in a similar fashion in the presence of walkoff. Multimode pumping is more difficult in longer OPO cavities due to increased buildup time of higher order OPO modes.Item Open Access Numerical analysis of multidomain systems: coupled nonlinear PDEs and DAEs with noise(Institute of Electrical and Electronics Engineers, 2018) Demir, A.; Hanay, SelimWe present a numerical modeling and simulation paradigm for multidomain, multiphysics systems with components modeled both in a lumped and distributed manner. The lumped components are modeled with a system of differential-Algebraic equations (DAEs), whereas the possibly nonlinear distributed components that may belong to different physical domains are modeled using partial differential equations (PDEs) with associated boundary conditions. We address a comprehensive suite of problems for nonlinear coupled DAE-PDE systems including 1) transient simulation; 2) periodic steady-state (PSS) analysis formulated as a mixed boundary value problem that is solved with a hierarchical spectral collocation technique based on a joint Fourier-Chebyshev representation, for both forced and autonomous systems; 3) Floquet theory and analysis for coupled linear periodically time-varying DAE-PDE systems; 4) phase noise analysis for multidomain oscillators; and 5) efficient parameter sweeps for PSS and noise analyses based on first-order and pseudo-Arclength continuation schemes. All of these techniques, implemented in a prototype simulator, are applied to a substantial case study: A multidomain feedback oscillator composed of distributed and lumped components in two physical domains, namely, a nano-mechanical beam resonator operating in the nonlinear regime, an electrical delay line, an electronic amplifier and a sensor-Actuator for the transduction between the two physical domains.Item Open Access Wien bridge based RC chaos generator(IET, 1995) Morgül, Ö.A new circuit, which is formed by coupling a Chua diode with a Wien bridge oscillator in parallel, is presented. This circuit contains only resistors, capacitors and operational amplifiers. By choosing element values appropriately, this circuit is shown experimentally to exhibit various forms of chaotic behaviour.