Browsing by Subject "Orthogonal frequency division multiplexing (OFDM)"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Implementation of an OFDM based underwater acoustic modem(2011) Demirörs, EmrecanIn this thesis we designed and implemented an underwater acoustic (UWA) communication system employing multicarrier modulation in the form of orthogonal frequency division multiplexing (OFDM). UWA communication became more popular as there has been a growing interest in transmitting real-time data, such as video and sonar images. There are many applications where these transmissions are used. These applications are underwater wireless sensor networks(UWSN) and unmanned underwater vehicles (UUVs) for military and scientific purposes. Therefore, building an efficient UWA communication system which has a high data rate can improve these applications’ performance signifi- cantly. Currently, many underwater communication systems use single carrier modulation which have limited data rate due to complexity of their receivers, as frequency selectivity of the channel increases when the symbol rate increases, so we preferred to use multicarrier modulation in UWA communication in order to increase data rate of our system. In this thesis, we considered a system that uses zero-padded (ZP) OFDM modulation. Based on ZP-OFDM, we used a receiver model that performs pilot-tone based channel estimation, carrier frequency offset compensation based on least squares (LS) fitting error or null subcarriers if they occur and data demodulation for each OFDM block individually. We used MATLAB environment for implementing our system. The MATLAB scripts generate a data burst that contains OFDM blocks, and then it is transmitted to the hardware from a laptop by using a Data Acquisition (DAQ) Card. At the other side of the system, the receiver laptop gets the data by using a DAQ Card. As the data is received, MATLAB scripts are used for demodulating it. As we built our system, we performed underwater experiments at Bilkent Lake Facility to investigate its performance in a real UWA channel. In our test, a data rate of 13.92 kbps has been achieved with quadrature phase shift keying (QPSK) modulation while the bit-error-rate (BER) was less then 9x10−2 without using any coding.Item Open Access Performance limits on ranging with cognitive radio(IEEE, 2009-06) Dardari, D.; Karisan, Yasir; Gezici, Sinan; D'Amico, A. A.; Mengali, U.Cognitive radio is a promising paradigm for efficient utilization of the radio spectrum due to its capability to sense environmental conditions and adapt its communication and localization features. In this paper, the theoretical limits on time-of-arrival estimation for cognitive radio localization systems are derived in the presence of interference. In addition, an optimal spectrum allocation strategy which provides the best ranging accuracy limits is proposed. The strategy accounts for the constraints from the sensed interference level as well as from the regulatory emission mask. Numerical results are presented to illustrate the improvements that can be achieved by the proposed approach. © 2009 IEEE.Item Open Access Range estimation in multicarrier systems in the presence of interference: performance limits and optimal signal design(IEEE, 2011) Karisan, Y.; Dardari, D.; Gezici, Sinan; D'Amico, A. A.; Mengali, U.Theoretical limits on time-of-arrival (equivalently, range) estimation are derived for multicarrier systems in the presence of interference. Specifically, closed-form expressions are obtained for Cramer-Rao bounds (CRBs) in various scenarios. In addition, based on CRB expressions, an optimal power allocation (or, spectrum shaping) strategy is proposed. This strategy considers the constraints not only from the sensed interference level but also from the regulatory emission mask. Numerical results are presented to illustrate the improvements achievable with the optimal power allocation scheme, and a maximum likelihood time-of-arrival estimation algorithm is studied to assess the effects of the proposed approach in practical estimators.