Browsing by Subject "Optical image storage"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access CO2 laser polishing of microfluidic channels fabricated by femtosecond laser assisted carving(Institute of Physics Publishing, 2016-10) Serhatlioglu, M.; Ortaç, B.; Elbuken, C.; Bıyıklı, Necmi; Solmaz, M. E.In this study, we investigate the effects of CO2 laser polishing on microscopic structures fabricated by femtosecond laser assisted carving (FLAC). FLAC is the peripheral laser irradiation of 2.5D structures suitable for low repetition rate lasers and is first used to define the microwell structures in fused silica followed by chemical etching. Subsequently, the bottom surface of patterned microwells is irradiated with a pulsed CO2 laser. The surfaces were characterized using an atomic force microscope (AFM) and scanning electron microscope (SEM) in terms of roughness and high quality optical imaging before and after the CO2 laser treatment. The AFM measurements show that the surface roughness improves more than threefold after CO2 laser polishing, which promises good channel quality for applications that require optical imaging. In order to demonstrate the ability of this method to produce low surface roughness systems, we have fabricated a microfluidic channel. The channel is filled with polystyrene bead-laden fluid and imaged with transmission mode microscopy. The high quality optical images prove CO2 laser processing as a practical method to reduce the surface roughness of microfluidic channels fabricated by femtosecond laser irradiation. We further compared the traditional and laser-based glass micromachining approaches, which includes FLAC followed by the CO2 polishing technique.Item Open Access Joint estimation and optimum encoding of depth field for 3-D object-based video coding(IEEE, 1996-09) Alatan, A. Aydın; Onural, Levent3-D motion models can be used to remove temporal redundancy between image frames. For efficient encoding using 3-D motion information, apart from the 3-D motion parameters, a dense depth field must also be encoded to achieve 2-D motion compensation on the image plane. Inspiring from Rate-Distortion Theory, a novel method is proposed to optimally encode the dense depth fields of the moving objects in the scene. Using two intensity frames and 3-D motion parameters as inputs, an encoded depth field can be obtained by jointly minimizing a distortion criteria and a bit-rate measure. Since the method gives directly an encoded field as an output, it does not require an estimate of the field to be encoded. By efficiently encoding the depth field during the experiments, it is shown that the 3-D motion models can be used in object-based video compression algorithms.