Browsing by Subject "Optical burst switching"
Now showing 1 - 16 of 16
- Results Per Page
- Sort Options
Item Open Access Analysis of continuous feedback Markov fluid queues and its applications to modeling Optical Burst Switching(IEEE, 2013) Yazıcı, Mehmet Akif; Akar, NailOptical Burst Switching (OBS) has been proposed as a candidate technology for the next-generation Internet. In OBS, packets are assembled into a burst, and a burst control packet is sent in advance to inform and reserve resources at the optical nodes in the path of the burst. In this study, we analyze the horizon-based reservation scheme in OBS using Markov fluid queues. First, we provide a solution to continuous feedback Markov fluid queues, then we model the horizon-based reservation scheme as a continuous feedback Markov fluid queue and numerically study it. We provide numerical examples to validate our model and its solution technique as well as to obtain some insight on the horizon-based reservation mechanism. © 2013 IEEE.Item Open Access Congestion window-based adaptive burst assembly for TCP traffic in OBS networks(Springer, 2010-06-29) Ozsarac, S.; Karasan, E.Burst assembly is one of the key factors affecting the TCP performance in optical burst switching (OBS) networks. When the TCP congestion window is small, the fixed-delay burst assembler waits unnecessarily long, which increases the end-to-end delay and thus decreases the TCP goodput. On the other hand, when the TCP congestion window becomes larger, the fixed-delay burst assembler may unnecessarily generate a large number of small-sized bursts, which increases the overhead and decreases the correlation gain, resulting in a reduction in the TCP goodput. In this paper, we propose adaptive burst assembly algorithms that use the congestion window sizes of TCP flows. Using simulations, we show that the usage of the congestion window size in the burst assembly algorithm significantly improves the TCP goodput (by up to 38.4% on the average and by up to 173.89% for individual flows) compared with the timerbased assembly, even when the timer-based assembler uses the optimum assembly period. It is shown through simulations that even when estimated values of the congestion window size, that are obtained via passive measurements, are used, TCP goodput improvements are still close to the results obtained by using exact values of the congestion window.Item Open Access Dimensioning shared-per-node recirculating fiber delay line buffers in an optical packet switch(Elsevier, 2013) Akar, N.; Gunalay, Y.Optical buffering based on fiber delay lines (FDLs) has been proposed as a means for contention resolution in an optical packet switch. In this article, we propose a queuing model for feedback-type shared-per-node recirculating FDL optical buffers in asynchronous optical switching nodes. In this model, optical packets are allowed to recirculate over FDLs as long as the total number of recirculations is less than a pre-determined limit to meet signal loss requirements. Markov Modulated Poisson Process (MMPP)-based overflow traffic models and fixed-point iterations are employed to provide an approximate analysis procedure to obtain blocking probabilities as a function of various buffer parameters in the system when the packet arrival process at the optical switch is Poisson. The proposed algorithm is numerically efficient and accurate especially in a certain regime identified with relatively long and variably-sized FDLs, making it possible to dimension optical buffers in next-generation optical packet switching systems.Item Open Access Dynamic threshold-based assembly algorithms for optical burst switching networks subject to burst rate constraints(Springer, 2010-04-17) Toksöz, M. A.; Akar, N.Control plane load stems from burst control packets which need to be transmitted end-to-end over the control channel and furtherprocessed at core nodes of an optical burst switching (OBS) network for reserving resources in advance for an upcoming burst. Burst assembly algorithms are generally designed without taking into consideration the control plane load they lead to. In this study, we propose traffic-adaptive burst assembly algorithms that attempt to minimize the average burst assembly delay subject to burst rate constraints and hence limit the control plane load. The algorithms we propose are simple to implement and we show using synthetic and real traffic traces that they perform substantially better than the usual timer-based schemes.Item Open Access Effect of burst length on loss probability in OBS networks with void-filling scheduling(2006) Kamçı, Ahmet KerimOptical burst switching (OBS) is a new transport architecture for the next generation optical internet infrastructure which is necessary for the increasing demand of high speed data traffic. Optical burst switching stands between optical packet switching, which is technologically difficult, and optical circuit switching, which is not capable of efficiently transporting bursty internet traffic. Apart from its promising features, optical burst switching suffers from high traffic blocking probabilities. Wavelength conversion coupled with fiber delay lines (FDL) provide one of the best means of contention resolution in optical burst switching networks. In this thesis, we examine the relation between burst loss probability and burst sizes for void filling scheduling algorithms. Simulations are performed for various values of the processing and switching times and for different values of wavelengths per fiber and FDL granularity. The main contribution of this thesis is the analysis of the relationship between burst sizes and processing time and FDL induced voids. This in turn creates a better understanding of the burstification and contention resolution mechanisms in OBS networks. We show that voids generated during scheduling are governed by the FDL granularity and the product of the per-hop processing delay and residual number of hops until the destination. We also show that differentiation between bursts with different sizes is achieved for different network parameters and a differentiation mechanism based on burst lengths is proposed for OBS networks.Item Open Access Exact analysis of single-wavelength optical buffers with feedback markov fluid queues(Optical Society of America, 2009-10-15) Kankaya H. E.; Akar, N.Optical buffering via fiber delay lines is used for contention resolution in optical packet and optical burst switching nodes. This article addresses the problem of exactly finding the blocking probabilities in an asynchronous single-wavelength optical buffer. Packet lengths are assumed to be variable and modeled by phase-type distributions, whereas the packet arrival process is modeled by a Markovian arrival process that can capture autocorrelations in interarrival times. The exact solution is based on the theory of feedback fluid queues for which we propose numerically efficient and stable algorithms. We not only find the packet blocking probabilities but also the entire distribution of the unfinished work in this system from which all performance measures of interest can be derived.Item Open Access Flow control and service differentiation in optical burst switching networks(2005) Boyraz, HakanOptical Burst Switching (OBS) is being considered as a candidate architecture for the next generation optical Internet. The central idea behind OBS is the assembly of client packets into longer bursts at the edge of an OBS domain and the promise of optical technologies to enable switch reconfiguration at the burst level therefore providing a near-term optical networking solution with finer switching granularity in the optical domain. In conventional OBS, bursts are injected to the network immediately after their assembly irrespective of the loading on the links, which in turn leads to uncontrolled burst losses and deteriorating performance for end users. Another key concern related to OBS is the difficulty of supporting QoS (Quality of Service) in the optical domain whereas support of differentiated services via per-class queueing is very common in current electronically switched networks. In this thesis, we propose a new control plane protocol, called Differentiated ABR (D-ABR), for flow control (i.e., burst shaping) and service differentiation in optical burst switching networks. Using D-ABR, we show with the aid of simulations that the optical network can be designed to work at any desired burst blocking probability by the flow control service of the proposed architecture. The proposed architecture requires certain modifications to the existing control plane mechanisms as well as incorporation of advanced scheduling mechanisms at the ingress nodes; however we do not make any specific assumptions on the data plane of the optical nodes. With this protocol, it is possible to almost perfectly isolate high priority and low priority traffic throughout the optical network as in the strict priority-based service differentiation in electronically switched networks. Moreover, the proposed architecture moves the congestion away from the OBS domain to the edges of the network where it is possible to employ advanced queueing and buffer management mechanisms. We also conjecture that such a controlled OBS architecture may reduce the number of costly Wavelength Converters (WC) and Fiber Delay Lines (FDL) that are used for contention resolution inside an OBS domain.Item Open Access Joint resource and network scheduling with adaptive offset determination for optical burst switched grids(Elsevier, 2010-11-24) Koseoglu, M.; Karasan, E.Optical burst switching (OBS) is a promising technology for optical grids with short-lived and interactive data communication requirements. On the other hand, burst losses are in the nature of the OBS protocol and these losses severely affect the grid job completion times. This paper first proposes a joint grid resource and network provisioning method to avoid congestion in the network in order to minimize grid job completion times. Simulations show that joint provisioning significantly reduces completion times in comparison to other methods that perform network provisioning after grid scheduling. An adaptive extra offset based quality of service (QoS) mechanism is also proposed in order to reduce grid burst losses in case of network congestion. Results show that this adaptive mechanism significantly reduces grid completion times by exploiting the trade-off between decreasing loss probability and increasing delay introduced by the extra offset time.Item Open Access Packet loss analysis of synchronous buffer-less optical switch with shared limited range wavelength converters(IEEE, 2007) Raffaelli, C.; Savi, M.; Akar, Nail; Karasan, EzhanApplication of synchronous optical switches in Optical Packet/Burst switched networks is considered. The shared per node architectural concept, where wavelength converters are shared among all input and output channels, is applied for contention resolution in the wavelength domain. A semi-analytical traffic model suitable to represent the different contributions to packet loss is proposed and validated. Full and limited range wavelength conversion capabilities are considered, and loss results obtained to support switch design. An approximated fully analytical approach for the limited range case is also described and comparison with simulation results is presented to assess the capability to capture the main aspects of packet loss behavior.Item Open Access Performance study of asynchronous/ synchronous optical burst/ packet switching with partial wavelength conversion(2006) Doğan, KaanWavelength conversion is known to be one of the most effective methods for contention resolution in optical packet/burst switching networks. In this thesis, we study various optical switch architectures that employ partial wavelength conversion, as opposed to full wavelength conversion, in which a number of converters are statistically shared per input or output link. Blocking is inevitable in case contention cannot be resolved and the probability of packet blocking is key to performance studies surrounding optical packet switching systems. For asynchronous switching systems with per output link converter sharing, a robust and scalable Markovian queueing model has recently been proposed by Akar and Karasan for calculating blocking probabilities in case of Poisson traffic. One of the main contributions of this thesis is that this existing model has been extended to cover the more general case of a Markovian arrival process through which one can study the impact of traffic parameters on system performance. We further study the same problem but with the converters being of limited range type. Although an analytical model is hard to build for this problem, we show through simulations that the so-called far conversion policy in which the optical packet is switched onto the farthest available wavelength in the tuning range, outperforms the other policies we studied. We point out the clustering effect in the use of wavelengths to explain this phenomenon. Finally, we study a synchronous optical packet switching architecture employing partial wavelength conversion at the input using the per input line converter sharing. For this architecture, we first obtain the optimal wavelength scheduler using integer linear programming and then we propose a number of heuristical scheduling algorithms. These algorithms are tested using simulations under symmetric and asymmetric traffic scenarios. Our results demonstrate that one can substantially reduce the costs of converters used in optical switching systems by using share per input link converter sharing without having to sacrifice much from the low blocking probabilities provided by full input wavelength conversion. Moreover, we show that the heuristic algorithm that we propose in this paper provides packet loss probabilities very close to those achievable using integer linear programming and is also easy to implement.Item Open Access Rate-controlled optical burst switching for both congestion avoidance and service differentiation(Elsevier, 2005) Boyraz, H.; Akar, N.Optical Burst Switching (OBS) has recently been proposed as a candidate architecture for the next generation optical Internet. Several challenging issues remain to be solved to pave the way for the OBS vision. Contention arises in OBS networks when two or more bursts are destined for the same wavelength, and a wide variety of reactive contention resolution mechanisms have been proposed in the literature. One challenging issue in OBS is proactively controlling the traffic flowing through the OBS network so that the network does not stay in a persistent state of contention, which we call the congestion avoidance problem. Another challenging issue is the need for service differentiation, which is common today in electronically switched networks via the use of advanced buffer management and scheduling mechanisms. However, such mechanisms cannot be used in OBS networks due to the limited use, or total absence, of buffering. One of the popular existing approaches to service differentiation in OBS networks is the use of larger offset times for high-priority bursts which, however, increases the delays and may adversely affect application-level performance. In this paper, we propose a feedback-based rate control protocol for the control plane of the OBS network to both address the congestion avoidance and service differentiation issues. Using this protocol, the incoming traffic is dynamically shaped at the edge of the OBS network in order to avoid potential congestion in the burst-switched core. Moreover, the traffic shaping policies for the low and high priority traffic classes are different, and it is possible using the proposed protocol to isolate high-priority and low-priority traffic almost perfectly over time scales on the order of a few round-trip times. Simulation results are reported to validate the congestion avoidance and service differentiation capabilities of the proposed architecture. © 2006 Elsevier B.V. All rights reserved.Item Open Access Retrial queuing models of multi-wavelength FDL feedback optical buffers(Institute of Electrical and Electronics Engineers, 2011) Akar, N.; Sohraby, K.Optical buffers based on Fiber Delay Lines (FDL) have been proposed for contention resolution in optical packet/burst switching systems. In this article, we propose a retrial queuing model for FDL optical buffers in asynchronous optical switching nodes. In the considered system, the reservation model employed is of post-reservation type and optical packets are allowed to re-circulate over the FDLs in a probabilistic manner. We combine the MMPP-based overflow traffic models of the classical circuit switching literature and fixed-point iterations to devise an algorithmic procedure to accurately estimate blocking probabilities as a function of various buffer parameters in the system when packet arrivals are Poisson and packet lengths are exponentially distributed. The proposed algorithm is both accurate and fast, allowing one to use the procedure to dimension optical buffers in next-generation optical packet switching systems.Item Open Access Stochastic analysis of finite population bufferless multiplexing in optical packet/burst switching systems(Denshi Jouhou Tsuushin Gakkai,Institute of Electronics Information and Communication Engineers, 2007) Akar, N.; Gunalay, Y.In this letter, we study the blocking probabilities in an asynchronous optical packet/burst switching system with full wavelength conversion. Most of the existing work use Poisson traffic models that is well-suited for an infinite population of users. In this letter, the optical packet traffic arriving at the switching system is modeled through a superposition of a finite number of identical on-off sources. We propose a block tridiagonal LU factorization algorithm to efficiently solve the two dimensional Markov chain that arises in the modeling of the switching system.Item Open Access A survey of quality of service differentiation mechanisms for optical burst switching networks(Elsevier, 2009-09-26) Akar, N.; Karasan, E.; Vlachos, K. G.; Varvarigos, E. A.; Careglio, D.; Klinkowski, M.; Pareta, J. S.This paper presents an overview of Quality of Service (QoS) differentiation mechanisms proposed for Optical Burst Switching (OBS) networks. OBS has been proposed to couple the benefits of both circuit and packet switching for the "on demand" use of capacity in the future optical Internet. In such a case, QoS support imposes some important challenges before this technology is deployed. This paper takes a broader view on QoS, including QoS differentiation not only at the burst but also at the transport levels for OBS networks. A classification of existing QoS differentiation mechanisms for OBS is given and their efficiency and complexity are comparatively discussed. We provide numerical examples on how QoS differentiation with respect to burst loss rate and transport layer throughput can be achieved in OBS networks.Item Open Access Using multiple per egress burstifiers for enhanced TCP performance in OBS networks(Springer New York LLC, 2009) Gurel, G.; Karasan, E.Burst assembly mechanism is one of the fundamental factors that determine the performance of an optical burst switching (OBS) network. In this paper, we investigate the influence of the number of burstifiers on TCP performance for an OBS network. The goodput of TCP flows between an ingress node and an egress node traveling through an optical network is studied as the number of assembly buffers per destination varies. First, the burst-length independent losses resulting from the contention in the core OBS network using a non-void-filling burst scheduling algorithm, e.g., Horizon, are studied. Then, burst-length dependent losses arising as a result of void-filling scheduling algorithms, e.g., LAUC-VF, are studied for two different TCP flow models: FTP-type long-lived flows and variable size short-lived flows. Simulation results show that for both types of scheduling algorithms, both types of TCP flow models, and different TCP versions (Reno, Newreno and Sack), TCP goodput increases as the number of burst assemblers per egress node is increased for an OBS network employing timer-based assembly algorithm. The improvement from one burstifier to moderate number of burst assemblers is significant (15-50% depending on the burst loss probability, per-hop processing delay, and the TCP version), but the goodput difference between moderate number of buffers and per-flow aggregation is relatively small, implying that an OBS edge switch should use moderate number of assembly buffers per destination for enhanced TCP performance without substantially increasing the hardware complexity. © 2008 Springer Science+Business Media, LLC.Item Open Access Wavelength converter sharing in asynchronous optical packet/burst switching: an exact blocking analysis for markovian arrivals(IEEE, 2006-12-11) Akar, N.; Karasan, E.; Doğan, K.In this paper, we study the blocking probabilities in a wavelength division multiplexing-based asynchronous bufferless optical packet/burst switch equipped with a bank of tuneable wavelength converters dedicated to each output fiber line. Wavelength converter sharing, also referred to as partial wavelength conversion, corresponds to the case of a number of converters shared amongst a larger number of wavelength channels. In this study, we present a probabilistic framework for exactly calculating the packet blocking probabilities for optical packet/burst switching systems utilizing wavelength converter sharing. In our model, packet arrivals at the optical switch are first assumed to be Poisson and later generalized to the more general Markovian arrival process to cope with very general traffic patterns whereas packet lengths are assumed to be exponentially distributed. As opposed to the existing literature based on approximations and/or simulations, we formulate the problem as one of finding the steady-state solution of a continuous-time Markov chain with a block tridiagonal infinitesimal generator. To find such solutions, we propose a numerically efficient and stable algorithm based on block tridiagonal LU factorizations. We show that exact blocking probabilities can be efficiently calculated even for very large systems and rare blocking probabilities, e.g., systems with 256 wavelengths per fiber and blocking probabilities in the order of 10−40. Relying on the stability and speed of the proposed algorithm, we also provide a means of provisioning wavelength channels and converters in optical packet/burst switching systems.