Browsing by Subject "Optical bistability"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Optical bistability in one-dimensional doped photonic crystals with spontaneously generated coherence(2013) Aas, S.; Müstecaplioǧlu O.E.We investigate optical bistability in a multilayer one-dimensional photonic crystal where the central layer is doped with Λ-type three-level atoms. We take into account the influence of spontaneously generated coherence when the lower atomic levels are sufficiently close to each other, in which case Kerr-type nonlinear response of the atoms is enhanced. We calculate the propagation of a probe beam in the defect mode window using the numerical nonlinear transfer matrix method. We find that Rabi frequency of a control field acting on the defect layer and the detuning of the probe field from the atomic resonance can be used to control the size and contrast of the hysteresis loop and the threshold of the optical bistability. In particular we find that at the optimal spontaneously generated coherence, a three orders of magnitude lower threshold can be achieved relative to the case without the coherence. © 2013 American Physical Society.Item Open Access Plane-wave dynamics of optical parametric oscillation with simultaneous sum-frequency generation(Institute of Electrical and Electronics Engineers, 1999-06) Dikmelik, Y.; Akgün, G.; Aytür, O.This paper presents a theoretical analysis of sum-frequency generating optical parametric oscillators where a single nonlinear crystal is used for both parametric generation and sum-frequency generation. In these devices, the parametric and sum-frequency generation processes are both phase matched for the same direction of propagation inside the crystal. Different polarization geometries for which this simultaneous phase-matching condition can potentially be satisfied are identified and categorized, for both birefringent and quasi-phase-matching methods. Plane-wave coupled-mode equations are presented for each of these categories. Solutions of these coupled mode equations and calculation of the single-pass saturated signal gain are outlined. Intracavity signal photon flux density calculations based on these solutions lead to stable steady-state upconversion, multistability, and chaos. The dependence of the photon conversion efficiency on various design parameters are investigated.