Browsing by Subject "Operator Versus"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access On two equivalent dilation theorems in VH-spaces(Birkhaeuser Science, 2012) Gheondea, A.; Ugurcan, B. E.We prove that a generalized version, essentially obtained by R. M. Loynes, of the B. Sz.-Nagy's Dilation Theorem for B*(H)-valued (here H is a VH-space in the sense of Loynes) positive semidefinite maps on *-semigroups is equivalent with a generalized version of the W. F. Stinespring's Dilation Theorem for B*(H)-valued completely positive linear maps on B*-algebras. This equivalence result is a generalization of a theorem of F. H. Szafraniec, originally proved for the case of operator valued maps (that is, when H is a Hilbert space). © 2011 Springer Basel AG.