Browsing by Subject "One-dimensional Nanostructures"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Tailoring insoluble nanobelts into soluble anti-UV nanopotpourris(Royal Society of Chemistry, 2011) Wang, J.; Sun, X. W.; Jiao, Z.; Khoo, E.; Lee, P. S.; Ma, J.; Demir, Hilmi VolkanSoluble, transparent and anti-UV nanopotpourris have been prepared by tailoring long nanobelts. The strains and layered structures facilitate the breaking of the as-synthesized nanobelts under an applied mechanical action. The developed tailoring process of nanobelts is a general top-down secondary processing of layered nanostructures at the nanoscale level, which can be expended to the modifications of layered nanowires, nanotubes and hierarchical nanostructures. By tailoring, the size, morphology and solubility are modified, which may open up an area of advanced processing of nanomaterials and hint at some potential applications. Because of the excellent solubility of the tailored nanopotpourris, they are easily dispersed in cosmetics or polymer films, which are quite useful for some anti-UV protection applications, such as anti-UV sunscreen creams and anti-UV window films for vehicles and buildings.Item Open Access Tailoring self-organized nanostructured morphologies in kilometer-long polymer fiber(Nature Publishing Group, 2014-05-06) Khudiyev, T.; Tobail, O.; Bayındır, MehmetWhile nanowires and nanospheres have been utilized in the design of a diverse array of nanoscale devices, recent schemes frequently require nanoscale architectures of higher complexity. However, conventional techniques are largely unsatisfactory for the production of more intricate nanoscale shapes and patterns, and even successful fabrication methods are incompatible with large-scale production efforts. Novel top-down, iterative size reduction (ISR)-mediated approaches have recently been shown to be promising for the production of high-throughput cylindrical and spherical nanostructures, though more complex architectures have yet to be created using this process. Here we report the presence of a hitherto-undescribed transitory region between nanowire and nanosphere transformation, where a diverse array of complex quasi one-dimensional nanostructures is produced by Rayleigh-Plateau instability-mediated deformation during the progress of a combined ISR/thermal instability technique. Temperature-based tailoring of architecturally diverse, indefinitely long, globally parallel, complex nanostructure arrays with high uniformity and low size variation facilitates the development of in-fiber or free-standing nanodevices with significant advantages over on-chip devices.