Browsing by Subject "On-line algorithms"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Adaptive hierarchical space partitioning for online classification(IEEE, 2016) Kılıç, O. Fatih; Vanlı, N. D.; Özkan, H.; Delibalta, İ.; Kozat, Süleyman SerdarWe propose an online algorithm for supervised learning with strong performance guarantees under the empirical zero-one loss. The proposed method adaptively partitions the feature space in a hierarchical manner and generates a powerful finite combination of basic models. This provides algorithm to obtain a strong classification method which enables it to create a linear piecewise classifier model that can work well under highly non-linear complex data. The introduced algorithm also have scalable computational complexity that scales linearly with dimension of the feature space, depth of the partitioning and number of processed data. Through experiments we show that the introduced algorithm outperforms the state-of-the-art ensemble techniques over various well-known machine learning data sets.Item Open Access Online balancing two independent criteria(Springer, 2008-10) Tse, Savio S.H.We study the online bicriteria load balancing problem in this paper. We choose a system of distributed homogeneous file servers located in a cluster as the scenario and propose two online approximate algorithms for balancing their loads and required storage spaces. We first revisit the best existing solution for document placement, and rewrite it in our first algorithm by imposing some flexibilities. The second algorithm bounds the load and storage space of each server by less than three times of their trivial lower bounds, respectively; and more importantly, for each server, the value of at least one parameter is far from its worst case. The time complexities for both algorithm are O(logM). © 2008 Springer Berlin Heidelberg.