Browsing by Subject "Object-based video coding"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access 3-D motion estimation of rigid objects for video coding applications using an improved iterative version of the E-matrix method(Institute of Electrical and Electronics Engineers, 1998-02) Alatan, A. A.; Onural, L.As an alternative to current two-dimensional (2-D) motion models, a robust three-dimensional (3-D) motion estimation method is proposed to be utilized in object-based video coding applications. Since the popular E-matrix method is well known for its susceptibility to input errors, a performance indicator, which tests the validity of the estimated 3-D motion parameters both explicitly and implicitly, is defined. This indicator is utilized within the RANSAC method to obtain a robust set of 2-D motion correspondences which leads to better 3-D motion parameters for each object. The experimental results support the superiority of the proposed method over direct application of the E-matrix method.Item Open Access Estimation of depth fields suitable for video compression based on 3-D structure and motion of objects(Institute of Electrical and Electronics Engineers, 1998-06) Alatan, A. A.; Onural, L.Intensity prediction along motion trajectories removes temporal redundancy considerably in video compression algorithms. In three-dimensional (3-D) object-based video coding, both 3-D motion and depth values are required for temporal prediction. The required 3-D motion parameters for each object are found by the correspondence-based E-matrix method. The estimation of the correspondences - two-dimensional (2-D) motion field - between the frames and segmentation of the scene into objects are achieved simultaneously by minimizing a Gibbs energy. The depth field is estimated by jointly minimizing a defined distortion and bitrate criterion using the 3-D motion parameters. The resulting depth field is efficient in the rate-distortion sense. Bit-rate values corresponding to the lossless encoding of the resultant depth fields are obtained using predictive coding; prediction errors are encoded by a Lempel-Ziv algorithm. The results are satisfactory for real-life video scenes.