Browsing by Subject "Number of samples"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Fast and accurate algorithm for the computation of complex linear canonical transforms(Optical Society of America, 2010-08-05) Koç A.; Özaktaş, Haldun M.; Hesselink, L.A fast and accurate algorithm is developed for the numerical computation of the family of complex linear canonical transforms (CLCTs), which represent the input-output relationship of complex quadratic-phase systems. Allowing the linear canonical transform parameters to be complex numbers makes it possible to represent paraxial optical systems that involve complex parameters. These include lossy systems such as Gaussian apertures, Gaussian ducts, or complex graded-index media, as well as lossless thin lenses and sections of free space and any arbitrary combinations of them. Complex-ordered fractional Fourier transforms (CFRTs) are a special case of CLCTs, and therefore a fast and accurate algorithm to compute CFRTs is included as a special case of the presented algorithm. The algorithm is based on decomposition of an arbitrary CLCT matrix into real and complex chirp multiplications and Fourier transforms. The samples of the output are obtained from the samples of the input in ∼N log N time, where N is the number of input samples. A space-bandwidth product tracking formalism is developed to ensure that the number of samples is information-theoretically sufficient to reconstruct the continuous transform, but not unnecessarily redundant.Item Open Access New event detection and topic tracking in Turkish(John Wiley & Sons, Inc., 2010) Can, F.; Kocberber, S.; Baglioglu, O.; Kardas, S.; Ocalan, H. C.; Uyar, E.Topic detection and tracking (TDT) applications aim to organize the temporally ordered stories of a news stream according to the events. Two major problems in TDT are new event detection (NED) and topic tracking (TT). These problems focus on finding the first stories of new events and identifying all subsequent stories on a certain topic defined by a small number of sample stories. In this work, we introduce the first large-scale TDT test collection for Turkish, and investigate the NED and TT problems in this language. We present our test-collection-construction approach, which is inspired by the TDT research initiative. We show that in TDT for Turkish with some similarity measures, a simple word truncation stemming method can compete with a lemmatizer-based stemming approach. Our findings show that contrary to our earlier observations on Turkish information retrieval, in NED word stopping has an impact on effectiveness. We demonstrate that the confidence scores of two different similarity measures can be combined in a straightforward manner for higher effectiveness. The influence of several similarity measures on effectiveness also is investigated. We show that it is possible to deploy TT applications in Turkish that can be used in operational settings. © 2010 ASIS&T.