Browsing by Subject "Nucleus segmentation"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Attributed relational graphs for cell nucleus segmentation in fluorescence microscopy images(IEEE, 2013) Arslan, S.; Ersahin, T.; Cetin-Atalay, R.; Gunduz-Demir, C.More rapid and accurate high-throughput screening in molecular cellular biology research has become possible with the development of automated microscopy imaging, for which cell nucleus segmentation commonly constitutes the core step. Although several promising methods exist for segmenting the nuclei of monolayer isolated and less-confluent cells, it still remains an open problem to segment the nuclei of more-confluent cells, which tend to grow in overlayers. To address this problem, we propose a new model-based nucleus segmentation algorithm. This algorithm models how a human locates a nucleus by identifying the nucleus boundaries and piecing them together. In this algorithm, we define four types of primitives to represent nucleus boundaries at different orientations and construct an attributed relational graph on the primitives to represent their spatial relations. Then, we reduce the nucleus identification problem to finding predefined structural patterns in the constructed graph and also use the primitives in region growing to delineate the nucleus borders. Working with fluorescence microscopy images, our experiments demonstrate that the proposed algorithm identifies nuclei better than previous nucleus segmentation algorithms. © 2012 IEEE.Item Open Access Iterative H-minima-based marker-controlled watershed for cell nucleus segmentation(John Wiley & Sons, Inc., 2016) Koyuncu, Can Fahrettin; Akhan, Ece; Ersahin, T.; Cetin Atalay, R.; Gunduz Demir, ÇiğdemAutomated microscopy imaging systems facilitate high-throughput screening in molecular cellular biology research. The first step of these systems is cell nucleus segmentation, which has a great impact on the success of the overall system. The marker-controlled watershed is a technique commonly used by the previous studies for nucleus segmentation. These studies define their markers finding regional minima on the intensity/gradient and/or distance transform maps. They typically use the h-minima transform beforehand to suppress noise on these maps. The selection of the h value is critical; unnecessarily small values do not sufficiently suppress the noise, resulting in false and oversegmented markers, and unnecessarily large ones suppress too many pixels, causing missing and undersegmented markers. Because cell nuclei show different characteristics within an image, the same h value may not work to define correct markers for all the nuclei. To address this issue, in this work, we propose a new watershed algorithm that iteratively identifies its markers, considering a set of different h values. In each iteration, the proposed algorithm defines a set of candidates using a particular h value and selects the markers from those candidates provided that they fulfill the size requirement. Working with widefield fluorescence microscopy images, our experiments reveal that the use of multiple h values in our iterative algorithm leads to better segmentation results, compared to its counterparts.Item Open Access Object-oriented segmentation of cell nuclei in fluorescence microscopy images(Wiley-Liss, 2018) Koyuncu, Can Fahrettin; Cetin Atalay, R.; Gunduz Demir, CigdemCell nucleus segmentation remains an open and challenging problem especially to segment nuclei in cell clumps. Splitting a cell clump would be straightforward if the gradients of boundary pixels in-between the nuclei were always higher than the others. However, imperfections may exist: inhomogeneities of pixel intensities in a nucleus may cause to define spurious boundaries whereas insufficient pixel intensity differences at the border of overlapping nuclei may cause to miss some true boundary pixels. In contrast, these imperfections are typically observed at the pixel-level, causing local changes in pixel values without changing the semantics on a large scale. In response to these issues, this article introduces a new nucleus segmentation method that relies on using gradient information not at the pixel level but at the object level. To this end, it proposes to decompose an image into smaller homogeneous subregions, define edge-objects at four different orientations to encode the gradient information at the object level, and devise a merging algorithm, in which the edge-objects vote for subregion pairs along their orientations and the pairs are iteratively merged if they get sufficient votes from multiple orientations. Our experiments on fluorescence microscopy images reveal that this high-level representation and the design of a merging algorithm using edge-objects (gradients at the object level) improve the segmentation results.