Browsing by Subject "Nonlocal elasticity"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A versatile implicit computational framework for continuum-kinematics-inspired peridynamics(Springer, 2023-11-13) Firooz, S.; Javili, Ali; Steinmann, P.Continuum-kinematics-inspired peridynamics (CPD) has been recently proposed as a novel reformulation of peridynamics that is characterized by one-, two- and three-neighbor interactions. CPD is geometrically exact and thermodynamically consistent and does not suffer from zero-energy modes, displacement oscillations or material interpenetration. In this manuscript, for the first time, we develop a computational framework furnished with automatic differentiation for the implementation of CPD. Thereby, otherwise tedious analytical differentiation is automatized by employing hyper-dual numbers (HDN). This differentiation method does not suffer from round-off errors, subtractive cancellation errors or truncation errors and is thereby highly stable with superb accuracy being insensitive to perturbation values. The computational framework provided here is compact and model-independent, thus once the framework is implemented, any other material model can be incorporated via modifying the potential energy solely. Finally, to illustrate the versatility of our proposed framework, various potential energies are considered and the corresponding material response is examined for different scenarios.Item Open Access Relationships between the material parameters of continuum-kinematics-inspired peridynamics and isotropic linear elasticity for two-dimensional problems(Elsevier Ltd, 2021-12-06) Ekiz, Ekim; Steinmann, P.; Javili, AliContinuum-kinematics-inspired Peridynamics (CPD) has been recently proposed as a geometrically exact formulation of peridynamics that is also thermodynamically and variationally consistent. CPD can capture the Poisson effect exactly, unlike the original formulation of peridynamics (PD). Due to its geometrically exact nature, CPD does not suffer from zero-energy modes and displacement oscillations that may be observed in state-based PD formulations. For a two-dimensional analysis, CPD builds upon one-neighbor and two-neighbor interactions. The one-neighbor interactions of CPD are equivalent to the bond-based interactions of the original PD formalism. Two-neighbor interactions, however, are key in CPD since the basic notions of classical continuum kinematics, namely length and area, are preserved exactly. The isotropic two-dimensional CPD formulation of non-local elasticity therefore involves two material constants, namely C1 and C2, associated with length and area, respectively. This manuscript aims to establish relationships between the material parameters of CPD and isotropic linear elasticity for an affine deformation in a two-dimensional setting. It is shown that each of the CPD material parameters can be expressed in terms of any pairs of isotropic linear elasticity constants, such as Lamé parameters. Finally, we establish the admissible ranges for CPD material parameters.