BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Nonlinear adaptive filtering"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A comprehensive approach to universal piecewise nonlinear regression based on trees
    (IEEE, 2014) Vanli, N. D.; Kozat, S. S.
    In this paper, we investigate adaptive nonlinear regression and introduce tree based piecewise linear regression algorithms that are highly efficient and provide significantly improved performance with guaranteed upper bounds in an individual sequence manner. We use a tree notion in order to partition the space of regressors in a nested structure. The introduced algorithms adapt not only their regression functions but also the complete tree structure while achieving the performance of the 'best' linear mixture of a doubly exponential number of partitions, with a computational complexity only polynomial in the number of nodes of the tree. While constructing these algorithms, we also avoid using any artificial 'weighting' of models (with highly data dependent parameters) and, instead, directly minimize the final regression error, which is the ultimate performance goal. The introduced methods are generic such that they can readily incorporate different tree construction methods such as random trees in their framework and can use different regressor or partitioning functions as demonstrated in the paper.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Piecewise nonlinear regression via decision adaptive trees
    (IEEE, 2014-09) Vanlı, N. Denizcan; Sayın, Muhammed O.; Ergüt, S.; Kozat, Süleyman S.
    We investigate the problem of adaptive nonlinear regression and introduce tree based piecewise linear regression algorithms that are highly efficient and provide significantly improved performance with guaranteed upper bounds in an individual sequence manner. We partition the regressor space using hyperplanes in a nested structure according to the notion of a tree. In this manner, we introduce an adaptive nonlinear regression algorithm that not only adapts the regressor of each partition but also learns the complete tree structure with a computational complexity only polynomial in the number of nodes of the tree. Our algorithm is constructed to directly minimize the final regression error without introducing any ad-hoc parameters. Moreover, our method can be readily incorporated with any tree construction method as demonstrated in the paper. © 2014 EURASIP.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback