Browsing by Subject "Nonionic surfactants"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Continuous mesoporous pd films by electrochemical deposition in nonionic micellar solution(American Chemical Society, 2017) Iqbal, M.; Li C.; Wood, K.; Jiang B.; Takei, T.; Dag, Ö.; Baba, D.; Nugraha, A. S.; Asahi, T.; Whitten, A. E.; Hossain, M. S. A.; Malgras, V.; Yamauchi, Y.Mesoporous metals that combine catalytic activity and high surface area can provide more opportunities for electrochemical applications. Various synthetic methods, including hard and soft templating, have been developed to prepare mesoporous/nanoporous metals. Micelle assembly, typically involved in soft-templates, is flexible and convenient for such purposes. It is, however, difficult to control, and the ordering is significantly destroyed during the metal deposition process, which is detrimental when it comes to designing precisely mesostructured materials. In the present work, mesoporous Pd films were uniformly electrodeposited using a nonionic surfactant, triblock copolymer poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide), as a pore-directing agent. The interaction between micelles and metal precursors greatly influences the metal growth and determines the final structure. The water-coordinated species interact with the ethylene oxide moiety of the micelles to effectively drive the Pd(II) species toward the working electrode surface. From small-angle neutron scattering data, it is found that spherical P123 micelles, with an average diameter of ∼14 nm, are formed in the electrolyte, and the addition of Pd ions does not significantly modify their structure, which is the essence of the micelle assembly approach. The uniformly sized mesopores are formed over the entire mesoporous Pd film and have an average pore diameter of 10.9 nm. Cross-sectional observation of the film also shows mesopores spanning continuously from the bottom to the top of the film. The crystallinity, crystal phase, and electronic coordination state of the Pd film are also confirmed. Through this study, it is found that the optimized surfactant concentration and applied deposition potential are the key factors to govern the formation of homogeneous and well-distributed pores over the entire film. Interestingly, the as-prepared mesoporous Pd films exhibit superior electrocatalytic activity toward the ethanol oxidation reaction by fully utilizing the accessible active surface area. Our approach combines electrochemistry with colloidal and coordination chemistry and is widely applicable to other promising metals and alloy electrocatalysts.Item Open Access Effects of ions on the liquid crystalline mesophase of transition-metal salt: surfactant (CnEOm)(American Chemical Society, 2004) Dag, Ö.; Alayoǧlu, S.; Uysal, İ.The transition-metal aqua complex salts [M(H2O) x]Y2 (where M is some of the first- and second-row transitionmetal ions and Y is Cl-, NO3-, and ClO4- counteranions) form liquid crystalline (LC) mesophases with oligo(ethylene oxide) nonionic surfactants (CnH 2n+1(CH2CH2O)mOH, denoted as C nEOm). The structure of the [M(H2O) x]Y2:CnEOm mesophase is usually 2D hexagonal in nitrate systems, cubic in perchlorate systems, and absent in the chloride systems. The solubility of the metal aqua complex salt follows the Hofmeister series in a [M(H2O)x]Y2:C nEOm mesophase. However, the nitrate ion interacts with the metal center as a bidentate and/or unidentate ligand, therefore reducing the ion density (and/or ionic strength) of the LC medium and further enhancing the solubility of nitrate salt in the LC systems. The cobalt chloride salt is the only soluble chloride salt that undergoes ligand-exchange reactions in the [Co(H2O)6]Cl2:CnEOm system. In an LC mesophase, anions have a greater influence on the hydrophilicity of nonionic surfactants than do cations. The structure and stability of the LC mesophase can be controlled by controlling either the hydrophilicity of the nonionic surfactant (by choosing the right anion type) or the ion density of the medium (by either influencing the equilibrium between the free and coordinated anions or balancing between the coordinating and noncoordinating anions in the medium).Item Open Access Lithium salt-nonionic surfactant lyotropic liquid crystalline gel-electrolytes with redox couple for dye sensitized solar cells(Royal Society of Chemistry, 2016) Yılmaz, E.; Olutaş, E. B.; Barım, G.; Bandara, J.; Dag, Ö.Lithium salt (LiCl, LiBr, LiI, or LiNO3) and a non-ionic surfactant (such as 10-lauryl ether, C12E10) form lyotropic liquid crystalline (LLC) mesophases in the presence of a small amount of water. The mesophases can be prepared as gels by mixing all the ingredients in one pot or in the solution phase that they can be prepared by coating over any substrate where the LLC phase is formed by evaporating excess solvent. The second method is easier and produces the same mesophase as the first method. A typical composition of the LLC phases consists of 2-3 water per salt species depending on the counter anion. The LiI-C12E10 mesophases can also be prepared by adding I2 to the media to introduce an I-/I3 - redox couple that may be used as a gel-electrolyte in a dye-sensitized solar cell. Even though the mesophases contain a large amount of water in the media, this does not affect the cell performance. The water molecules in the mesophase are in the hydration sphere of the ions and do not act like bulk water, which is harmful to the anode of the dye-sensitized solar cells (DSSC). There are two major drawbacks of the salt-surfactant LLC mesophases in the DSSCs; one is the diffusion of the gels into the pores of the anode electrode and the other is the low ionic conductivity. The first issue was partially overcome by introducing the gel content as a solution and the gelation was carried in/over the pores of the dye modified titania films. To increase the ionic conductivity of the gels, other salts (such as LiCl, LiBr, and LiNO3) with better ionic conductivity were added to the media, however, those gels behave less effectively than pure LiI/I2 systems. Overall, the DSSCs constructed using the LLC electrolyte display high short circuit current (Isc of around 10 mA), high open circuit voltage (Voc of 0.81 V) and good fill factor (0.69) and good efficiency (3.3%). There is still room for improvement in addressing the above issues in order to enhance the cell efficiency by developing new methods of introducing the gel-electrolytes into the mesopores of the anode electrode.Item Open Access Lyotropic liquid-crystalline mesophase of lithium triflate-nonionic surfactant as gel electrolyte for graphene optical modulator(American Chemical Society, 2023) Balci, F. M.; Balci, S.; Kocabas, C.; Dag, Ö.Lithium salt (noncoordinating anions, such as lithium triflate (Ltf)) gel electrolytes may be key for the practical use of electrochemical devices. We introduce a new lyotropic liquid-crystalline (LLC) mesophase using Ltf, a small amount of water (as low as 1.3 water per Ltf), and nonionic surfactant (C18H37(OCH2CH2)10OH, C18E10). The LLC phase forms over a broad range of Ltf/C18E10 mole ratios, 2-18. The clear ethanol solution of the ingredients can be either directly spin-coated over a glass substrate to form a gel phase or it can be prepared as a gel by mixing Ltf, water, and C18E10. The mesophase leaches out surfactant molecules at low salt concentrations, but at a salt/surfactant mole ratio of above 8, the phase is homogeneous with a cubic mesostructure, fully transparent in the visible optical region, mechanically flexible, and an effective gel electrolyte. We have observed a large electrostatic doping on graphene with the Fermi energy level of ∼1.0 eV using Ltf-C18E10 gel electrolytes. The Ltf-based gels demonstrate better properties than commonly used ionic liquid electrolyte in graphene optical modulators. The stability of the new gel electrolytes and their superior performance make them suitable electrolytes for use in graphene-based optical modulators.Item Open Access Strong acid-nonionic surfactant lyotropic liquid-crystalline mesophases as media for the synthesis of carbon quantum dots and highly proton conducting mesostructured silica thin films and monoliths(American Chemical Society, 2015) Olutaş, E. B.; Balcı, F. M.; Dag, Ö.Lyotropic liquid-crystalline (LLC) materials are important in designing porous materials, and acids are as important in chemical synthesis. Combining these two important concepts will be highly beneficial to chemistry and material science. In this work, we show that a strong acid can be used as a solvent for the assembly of nonionic surfactants into various mesophases. Sulfuric acid (SA), 10-lauryl ether (C12E10), and a small amount of water form bicontinuous cubic (V1), 2Dhexagonal (H1), and micelle cubic (I1) mesophases with increasing SA/ C12E10 mole ratio. A mixture of SA and C12E10 is fluidic but transforms to a highly ordered LLC mesophase by absorbing ambient water. The LLC mesophase displays high proton conductivity (1.5 to 19.0 mS/cm at room temperature) that increases with an increasing SA content up to 11 SA/ C12E10 mole ratio, where the absorbed water is constant with respect to the SA amount but gradually increases from a 2.3 to 4.3 H2O/C12E10 mole ratio with increasing SA/C12E10 from 2 to 11, respectively. The mixture of SA and C12E10 slowly undergoes carbonization to produce carbon quantum dots (c-dots). The carbonization process can be controlled by simply controlling the water content of the media, and it can be almost halted by leaving the samples under ambient conditions, where the mixture slowly absorbs water to form photoluminescent c-dot-embedded mesophases. Over time the c-dots grow in size and increase in number, and the photoluminescence frequency gradually shifts to a lower frequency. The SA/C12E10 mesophase can also be used as a template to produce highly proton conducting mesostructured silica films and monoliths, as high as 19.3 mS/cm under ambient conditions. Aging the silica samples enhances the conductivity that can be even larger than for the LLC mesophase with the same amount of SA. The presence of silica has a positive effect on the proton conductivity of SA/C12E10 systems.