Browsing by Subject "Non-convex vector optimization"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Systemic risk measures based on value-at-risk(2023-07) Al-Ali, WissamThis thesis addresses the problem of computing systemic set-valued risk measures. The proposed method incorporates the clearing mechanism of the Eisenberg-Noe model, used as an aggregation function, with the value-at-risk, used as the underlying risk measure. The sample-average approximation (SAA) of the corresponding set-valued systemic risk measure can be calculated by solving a vector optimization problem. For this purpose, we propose a variation of the so-called grid algorithm in which grid points are evaluated by solving certain scalar mixed-integer programming problems, namely, the Pascoletti Serafini and norm-minimizing scalarizations. At the initialization step, we solve weighted sum scalarizations to establish a compact region for the algorithm to work on. We prove the convergence of the SAA optimal values of the scalarization problems to their respective true values. More-over, we prove the convergence of the approximated set-valued risk measure to the true set-valued risk measure in both the Wijsman and Hausdorff senses. In order to demonstrate the applicability of our findings, we construct a financial network based on the Bollob´as preferential attachment model. In addition, we model the economic disruptions using identically distributed random variables with a Pareto distribution. We conduct a comprehensive sensitivity analysis to investigate the effect of the number of scenarios, correlation coefficient, and Bollob´as network parameters on the systemic risk measure. The results highlight the minimal influence of the number of scenarios and correlation coefficient on the risk measure, demonstrating its stability and robustness, while shedding light on the profound significance of Bollob´as network parameters in determining the network dynamics and the overall level of systemic risk.