Browsing by Subject "Noise model"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Unknown From model to low noise amplifier monolithic microwave integrated circuit: 0.03–2.6 GHz plastic quad-flat no-leads packaged Gallium-Nitride low noise amplifier monolithic microwave integrated circuit(John Wiley & Sons Ltd., 2021-01-19) Osmanoğlu, Sinan; Özbay, EkmelThis paper describes an air cavity quad-flat no-leads (QFN) over-molded plastic packaged cascode broadband GaN LNA Monolithic Microwave Integrated Circuit (MMIC) with resistive feedback fabricated with 0.25 μm GaN HEMT technology. The single stage QFN packaged GaN LNA MMIC achieves a bandwidth of 0.03–2.6 GHz with a typical gain of 11.5 dB and less than 1.5 dB noise figure. The low noise amplifier (LNA) design is based on a model of a concept transistor, the cascode transistor used in the design, that has not been fabricated previously. The concept transistor is fabricated for the first time along with the GaN LNA MMIC. The fabricated GaN LNA MMIC is housed in a 12-lead 3 × 3 mm2 air cavity QFN over-molded plastic package and mounted on an application board. The measurements taken with the application board represent a good convergence with the design that is based on a concept transistor model. The measurement results and 50 Ω internal matching on both ports without the need for additional matching components make this LNA attractive for many applications.Item Unknown Location and curvature estimation of "spherical" targets using a flexible sonar configuration(IEEE, 1996) Barshan, BillurA novel, flexible, three-dimensional (3-D) multi-sensor sonar system is employed to localize the center of a spherical target and estimate its radius of curvature. The interesting limiting cases for the problem under study are the point and planar targets, both of which are important for the characterization of a mobile robot's environment. A noise model is developed based on real sonar data. An extended Kalman filter (EKF) which incorporates the developed noise model is employed as an estimation tool for optimal processing of the sensor data. Simulations and experimental results are provided for specularly reflecting cylindrical targets.