Browsing by Subject "Noise enhanced detection"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Noise enhanced detection in restricted Neyman-Pearson framework(IEEE, 2012-06) Bayram, S.; Gültekin, San; Gezici, SinanNoise enhanced detection is studied for binary composite hypothesis-testing problems in the presence of prior information uncertainty. The restricted Neyman-Pearson (NP) framework is considered, and a formulation is obtained for the optimal additive noise that maximizes the average detection probability under constraints on worst-case detection and false-alarm probabilities. In addition, sufficient conditions are provided to specify when the use of additive noise can or cannot improve performance of a given detector according to the restricted NP criterion. A numerical example is presented to illustrate the improvements obtained via additive noise. © 2012 IEEE.Item Open Access Noise enhanced hypothesis-testing in the restricted Bayesian framework(IEEE, 2010-04-12) Bayram, S.; Gezici, Sinan; Poor H. V.Performance of some suboptimal detectors can be enhanced by adding independent noise to their observations. In this paper, the effects of additive noise are investigated according to the restricted Bayes criterion, which provides a generalization of the Bayes and minimax criteria. Based on a generic M-ary composite hypothesis-testing formulation, the optimal probability distribution of additive noise is investigated. Also, sufficient conditions under which the performance of a detector can or cannot be improved via additive noise are derived. In addition, simple hypothesis-testing problems are studied in more detail, and additional improvability conditions that are specific to simple hypotheses are obtained. Furthermore, the optimal probability distribution of the additive noise is shown to include at most M mass points in a simple M-ary hypothesis-testing problem under certain conditions. Then, global optimization, analytical and convex relaxation approaches are considered to obtain the optimal noise distribution. Finally, detection examples are presented to investigate the theoretical results.Item Open Access Noise enhanced M-ary composite hypothesis-testing in the presence of partial prior information(IEEE, 2010-12-06) Bayram, S.; Gezici, SinanIn this correspondence, noise enhanced detection is studied for M-ary composite hypothesis-testing problems in the presence of partial prior information. Optimal additive noise is obtained according to two criteria, which assume a uniform distribution (Criterion 1) or the least-favorable distribution (Criterion 2) for the unknown priors. The statistical characterization of the optimal noise is obtained for each criterion. Specifically, it is shown that the optimal noise can be represented by a constant signal level or by a randomization of a finite number of signal levels according to Criterion 1 and Criterion 2, respectively. In addition, the cases of unknown parameter distributions under some composite hypotheses are considered, and upper bounds on the risks are obtained. Finally, a detection example is provided in order to investigate the theoretical results.