Browsing by Subject "Neyman-pearson"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Compressive sensing based target detection in delay-doppler radars(IEEE, 2013) Teke, Oguzhan; Arıkan, Orhan; Gürbüz, A.C.Compressive Sensing theory shows that, a sparse signal can be reconstructed from its sub-Nyquist rate random samples. With this property, CS approach has many applications. Radar systems, which deal with sparse signal due to its nature, is one of the important application of CS theory. Even if CS approach is suitable for radar systems, classical detections schemes under Neyman-Pearson formulations may result high probability of false alarm, when CS approach is used, especially if the target has off-grid parameters. In this study, a new detection scheme which enables CS techniques to be used in radar systems is investigated. © 2013 IEEE.Item Open Access Convexity properties of detection probability under additive Gaussian noise: optimal signaling and jamming strategies(IEEE, 2013) Dulek, B.; Gezici, Sinan; Arıkan, OrhanIn this correspondence, we study the convexity properties for the problem of detecting the presence of a signal emitted from a power constrained transmitter in the presence of additive Gaussian noise under the Neyman-Pearson (NP) framework. It is proved that the detection probability corresponding to the α-level likelihood ratio test (LRT) is either strictly concave or has two inflection points such that the function is strictly concave, strictly convex, and finally strictly concave with respect to increasing values of the signal power. In addition, the analysis is extended from scalar observations to multidimensional colored Gaussian noise corrupted signals. Based on the convexity results, optimal and near-optimal time sharing strategies are proposed for average/peak power constrained transmitters and jammers. Numerical methods with global convergence are also provided to obtain the parameters for the proposed strategies.Item Open Access Effects of additional independent noise in binary composite hypothesis-testing problems(IEEE, 2009-09) Bayram, Suat; Gezici, SinanPerformance of some suboptimal detectors can be improved by adding independent noise to their observations. In this paper, the effects of adding independent noise to observations of a detector are investigated for binary composite hypothesistesting problems in a generalized Neyman-Pearson framework. Sufficient conditions are derived to determine when performance of a detector can or cannot be improved via additional independent noise. Also, upper and lower limits are derived on the performance of a detector in the presence of additional noise, and statistical characterization of optimal additional noise is provided. In addition, two optimization techniques are proposed to calculate the optimal additional noise. Finally, simulation results are presented to investigate the theoretical results. © 2009 IEEE.Item Open Access Online learning under adverse settings(2015-05) Özkan, HüseyinWe present novel solutions for contemporary real life applications that generate data at unforeseen rates in unpredictable forms including non-stationarity, corruptions, missing/mixed attributes and high dimensionality. In particular, we introduce novel algorithms for online learning, where the observations are received sequentially and processed only once without being stored, under adverse settings: i) no or limited assumptions can be made about the data source, ii) the observations can be corrupted and iii) the data is to be processed at extremely fast rates. The introduced algorithms are highly effective and efficient with strong mathematical guarantees; and are shown, through the presented comprehensive real life experiments, to significantly outperform the competitors under such adverse conditions. We develop a novel highly dynamical ensemble method without any stochastic assumptions on the data source. The presented method is asymptotically guaranteed to perform as well as, i.e., competitive against, the best expert in the ensemble, where the competitor, i.e., the best expert, itself is also specifically designed to continuously improve over time in a completely data adaptive manner. In addition, our algorithm achieves a significantly superior modeling power (hence, a significantly superior prediction performance) through a hierarchical and self-organizing approach while mitigating over training issues by combining (taking finite unions of) low-complexity methods. On the contrary, the state-of-the-art ensemble techniques are heavily dependent on static and unstructured expert ensembles. In this regard, we rigorously solve the resulting issues such as the over sensitivity to source statistics as well as the incompatibility between the modeling power and the computational load/precision. Our results uniformly hold for every possible input stream in the deterministic sense regardless of the stationary or non-stationary source statistics. Furthermore, we directly address the data corruptions by developing novel versatile imputation methods and thoroughly demonstrate that the anomaly detection -in addition to being stand alone an important learning problem- is extremely effective for corruption detection/imputation purposes. To that end, as the first time in the literature, we develop the online implementation of the Neyman-Pearson characterization for anomalies in stationary or non-stationary fast streaming temporal data. The introduced anomaly detection algorithm maximizes the detection power at a specified controllable constant false alarm rate with no parameter tuning in a truly online manner. Our algorithms can process any streaming data at extremely fast rates without requiring a training phase or a priori information while bearing strong performance guarantees. Through extensive experiments over real/synthetic benchmark data sets, we also show that our algorithms significantly outperform the state-of-the-art as well as the most recently proposed techniques in the literature with remarkable adaptation capabilities to non-stationarity.Item Open Access Optimum Power Allocation for Average Power Constrained Jammers in the Presense of Non-Gaussian Noise(Institute of Electrical and Electronics Engineers, 2012-08) Bayram, S.; Vanli, N. D.; Dulek, B.; Sezer, I.; Gezici, SinanWe study the problem of determining the optimum power allocation policy for an average power constrained jammer operating over an arbitrary additive noise channel, where the aim is to minimize the detection probability of an instantaneously and fully adaptive receiver employing the Neyman-Pearson (NP) criterion. We show that the optimum jamming performance can be achieved via power randomization between at most two different power levels. We also provide sufficient conditions for the improvability and nonimprovability of the jamming performance via power randomization in comparison to a fixed power jamming scheme. Numerical examples are presented to illustrate theoretical results.Item Open Access Spectrum sensing via restricted neyman-pearson approach in the presence of non-Gaussian noise(IEEE, 2013) Turgut, Esma; Gezici, SinanIn this paper, spectrum sensing in cognitive radio systems is studied for non-Gaussian channels in the presence of prior distribution uncertainty. In most practical cases, some amount of prior information about signals of primary users is available to secondary users but that information is never perfect. In order to design optimal spectrum sensing algorithms in such cases, we propose to employ the restricted Neyman-Pearson (NP) approach, which maximizes the average detection probability under constraints on the worst-case detection and false-alarm probabilities. We derive a restricted NP based spectrum sensing algorithm for additive Gaussian mixture noise channels, and compare its performance against the generalized likelihood ratio test (GLRT) and the energy detector. Simulation results show that the proposed spectrum sensing algorithm provides improvements over the other approaches in terms of minimum (worst-case) and/or average detection probabilities. © 2013 IEEE.