Browsing by Subject "Network Lifetime"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Algorithms for sink mobility in wireless sensor networks to improve network lifetime(2008) Koç, MetinA wireless sensor network (WSN) consists of hundreds or thousands of sensor nodes organized in an ad-hoc manner to achieve a predefined goal. Although WSNs have limitations in terms of memory and processor, the main constraint that makes WSNs different from traditional networks is the battery problem. Since sensor nodes are generally deployed to areas with harsh environmental conditions, replacing the exhausted batteries become practically impossible. This requires to use the energy very carefully in both node and network level. Different approaches are proposed in the literature for improving network lifetime, including data aggregation, energy efficient routing schemes and MAC protocols, etc. Main motivation for these approaches is to prolong the network lifetime without sacrificing service quality. Sink (data collection node) mobility is also one of the effective solutions in the literature for network lifetime improvement. In this thesis, we focus on the controlled sink mobility and present a set of algorithms for different parts of the problem, like sink sites determination, and movement decision parameters. Moreover, a load balanced topology construction algorithm is given as another component of network lifetime improvement. Experiment results are presented which compare the performance of different components of the mobility scheme with other approaches in the literature, and the whole sink mobility scheme with random movement and static sink cases. As a result, it is observed that our algorithms perform better than random movement and static cases for different scenarios.Item Open Access Sleep scheduling for energy conservation in wireless sensor networks with partial coverage(2006) Yardibi, TarıkWireless sensor networks, which consist of many sensor devices communicating with each other in order to sense the environment, is an emerging field in the area of wireless networking. The primary objective in these wireless networks is the efficiency of energy consumption. Since these networks consist of a large number of sensors, allowing some of the nodes to sleep intermittently can greatly increase the network lifetime. Furthermore, some applications do not require 100% coverage of the network field and allowing the coverage to drop below 100%, i.e., partial coverage, can further increase the network lifetime. A sleep scheduling algorithm must be distributed, simple, scalable and energy efficient. In this thesis, the problem of designing such an algorithm which extends network lifetime while maintaining a target level of partial coverage is investigated. An algorithm called Distributed Adaptive Sleep Scheduling Algorithm (DASSA) which does not require location information is proposed. The performance of DASSA is compared with an integer linear programming (ILP) based optimum sleep scheduling algorithm, an oblivious algorithm and with an existing algorithm in the literature. DASSA attains network lifetimes up to 89% of the optimum solution, and it achieves significantly longer lifetimes compared with the other two algorithms. Furthermore, the minimum number of sensors that should be deployed in order to satisfy a given partial coverage target with a certain probability while maintaining connectivity is computed and an ILP formulation is presented for finding the minimum number of sensors that should be activated within the set of deployed sensors.