Browsing by Subject "Negative impacts"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Reactive footstep planning for a planar spring mass hopper(IEEE, 2009-10) Arslan, Ömür; Saranlı, Uluç; Morgül, ÖmerThe main driving force behind research on legged robots has always been their potential for high performance locomotion on rough terrain and the outdoors. Nevertheless, most existing control algorithms for such robots either make rigid assumptions about their environments (e.g flat ground), or rely on kinematic planning at low speeds. Moreover, the traditional separation of planning from control often has negative impact on the robustness of the system against model uncertainty and environment noise. In this paper, we introduce a new method for dynamic, fully reactive footstep planning for a simplified planar spring-mass hopper, a frequently used model for running behaviors. Our approach is based on a careful characterization of the model dynamics and an associated deadbeat controller, used within a sequential composition framework. This yields a purely reactive controller with a very large, nearly global domain of attraction that requires no explicit replanning during execution. Finally, we use a simplified hopper in simulation to illustrate the performance of the planner under different rough terrain scenarios and show that it is extremely robust to both model uncertainty and measurement noise. © 2009 IEEE.Item Open Access Robust scheduling and robustness measures for the discrete time/cost trade-off problem(Elsevier, 2010) Hazır, O.; Haouari, M.; Erel, E.Projects are often subject to various sources of uncertainties that have a negative impact on activity durations and costs. Therefore, it is crucial to develop effective approaches to generate robust project schedules that are less vulnerable to disruptions caused by uncontrollable factors. In this paper, we investigate the robust discrete time/cost trade-off problem, which is a multi-mode project scheduling problem with important practical relevance. We introduce surrogate measures that aim at providing an accurate estimate of the schedule robustness. The pertinence of each proposed measure is assessed through computational experiments. Using the insights revealed by the computational study, we propose a two-stage robust scheduling algorithm. Finally, we provide evidence that the proposed approach can be extended to solve a complex robust problem with tardiness penalties and earliness revenues. © 2010 Elsevier B.V. All rights reserved.