Browsing by Subject "Nearest neighbor classifiers"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A classification learning algorithm robust to irrelevant features(Springer, 1998-09) Güvenir, H. AltayPresence of irrelevant features is a fact of life in many realworld applications of classification learning. Although nearest-neighbor classification algorithms have emerged as a promising approach to machine learning tasks with their high predictive accuracy, they are adversely affected by the presence of such irrelevant features. In this paper, we describe a recently proposed classification algorithm called VFI5, which achieves comparable accuracy to nearest-neighbor classifiers while it is robust with respect to irrelevant features. The paper compares both the nearest-neighbor classifier and the VFI5 algorithms in the presence of irrelevant features on both artificially generated and real-world data sets selected from the UCI repository.Item Open Access Supervised machine learning algorithm for arrhythmia analysis(IEEE, 1997) Güvenir, H. Altay; Acar, Burak; Demiröz, Gülşen; Çekin, A.A new machine learning algorithm for the diagnosis of cardiac arrhythmia from standard 12 lead ECG recordings is presented. The algorithm is called VFI5 for Voting Feature Intervals. VFI5 is a supervised and inductive learning algorithm for inducing classification knowledge from examples. The input to VFI5 is a training set of records. Each record contains clinical measurements, from ECG signals and some other information such as sex, age, and weight, along with the decision of an expert cardiologist. The knowledge representation is based on a recent technique called Feature Intervals, where a concept is represented by the projections of the training cases on each feature separately. Classification in VFI5 is based on a majority voting among the class predictions made by each feature separately. The comparison of the VFI5 algorithm indicates that it outperforms other standard algorithms such as Naive Bayesian and Nearest Neighbor classifiers.