Browsing by Subject "Near Complete Decomposability"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Comparison of partitioning techniques for two-level iterative solvers on large, sparse Markov chains(SIAM, 2000) Dayar T.; Stewart, W. J.Experimental results for large, sparse Markov chains, especially the ill-conditioned nearly completely decomposable (NCD) ones, are few. We believe there is need for further research in this area, specifically to aid in the understanding of the effects of the degree of coupling of NCD Markov chains and their nonzero structure on the convergence characteristics and space requirements of iterative solvers. The work of several researchers has raised the following questions that led to research in a related direction: How must one go about partitioning the global coefficient matrix into blocks when the system is NCD and a two-level iterative solver (such as block SOR) is to be employed? Are block partitionings dictated by the NCD form of the stochastic one-step transition probability matrix necessarily superior to others? Is it worth investigating alternative partitionings? Better yet, for a fixed labeling and partitioning of the states, how does the performance of block SOR (or even that of point SOR) compare to the performance of the iterative aggregation-disaggregation (IAD) algorithm? Finally, is there any merit in using two-level iterative solvers when preconditioned Krylov subspace methods are available? We seek answers to these questions on a test suite of 13 Markov chains arising in 7 applications.Item Open Access Stochastic automata networks and near complete decomposability(SIAM, 2002) Gusak, O.; Dayar T.; Fourneau, J. M.Stochastic automata networks (SANs) have been developed and used in the last fifteen years as a modeling formalism for large systems that can be decomposed into loosely connected components. In this work, we extend the near complete decomposability concept of Markov chains (MCs) to SANs so that the inherent difficulty associated with solving the underlying MC can be forecasted and solution techniques based on this concept can be investigated. A straightforward approach to finding a nearly completely decomposable (NCD) partitioning of the MC underlying a SAN requires the computation of the nonzero elements of its global generator. This is not feasible for very large systems even in sparse matrix representation due to memory and execution time constraints. We devise an efficient decompositional solution algorithm to this problem that is based on analyzing the NCD structure of each component of a given SAN. Numerical results show that the given algorithm performs much better than the straightforward approach.