Browsing by Subject "Nanostructures--Optical properties."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access EBL fabricated plasmonic nanostructures for sensing applications(2013) Cinel, Neval APlasmonics is a major branch of photonics dealing with light-matter interactions in metallic nanostructures. Plasmonic devices provide extreme confinement of electromagnetic oscillations to very small volumes beyond diffraction limit at optical frequencies. Our aim in this thesis study is to demonstrate the utilization of plasmonics for several applications such as optical localized surface plasmon resonance (LSPR) biosensor design, enhancement of signal intensity in surface enhanced Raman spectroscopy (SERS) and absorption enhancement in photodetectors. Firstly, a sensor structure that detects the changes in the refractive index of the surrounding medium by optical transmission measurements was designed. Periodic silver nano-disk arrays on sapphire substrate written by Electron-Beam Lithography (EBL) were used for this aim. Optical characterization was done through transmission/reflection measurements and supported by finite difference time domain (FDTD) simulations. The sensor was first verified by a biotinavidin bioassay. Real time binding studies showed that the sensor response was saturated within the first 30 minutes of application. Concentration dependency of the sensor structure showed an adequate response at the 1 nM-100 nM range. The refractive index sensitivity of the sensor was determined as 354 nm/RIU. The idea was finally applied to the detection of heat killed E.Coli bacteria. Promising results that indicate the possibility of using the sensor for bacteria detection was obtained. Secondly, tandem truncated nano-cones composed of Au-SiO2-Au layers that exhibit highly tunable double resonance behavior were shown to increase SERS signal intensity, for the first time. Enhancement factor (EF) calculations indicated an enhancement factor of 3.86 x107 . The double resonance design showed a 10 fold better enhancement when compared to its single resonance counterpart. This enhancement is believed to be even more prominent for applications such as NIR-SERS and Surface Enhanced Hyper Raman Scattering (SEHRS). Another SERS substrate containing dual layer, periodic, “coupled” concentric rings, separated by a dielectric spacer provided Raman signal intensity 630 times larger than plain gold film and 8 times larger than an “etched” concentric ring structure. The design provided an enhancement factor of 1.67x107 . Finally, Al nanoparticles with plasmonic resonance at UV wavelengths fabricated in between the Schottky contacts of an MSM detector on semi-insulating GaN was shown to yield 1.5 fold enhancement in absorption and photocurrent collection. Plasmonic enhancement in UV was studied for the first time with this study. Another UV-MSM photodetector on GaN that includes subwavelength apertures surrounded by nano-structured metal gratings was compared to a conventional design without gratings. Results indicated an 8 fold enhancement in the photocurrent at the resonant wavelength.Item Open Access Lasing action and supercontinuum generation in nano- and micro-structures(2009) Akbulut, DuyguSupercontinuum generation is the substantial broadening of electromagnetic radiation due to nonlinear interactions with the transporting medium. It nds application in a wide range of areas, including spectroscopy, frequency metrology, optical coherence tomography and telecommunications. Whispering gallery mode microresonators con ne light in a micron scale area via total internal re ection mechanism. Among these structures, microtoroid is especially interesting since it combines ultrahigh quality factor and chip integrability. Applications of such structures include nonlinear and quantum optics, biological and chemical sensing, telecommunications and quantum electrodynamics. In the rst part of the present work, continuum generation from a nanostructured chalcogenide glass (As2Se3) core, high temperature polymer (polyethersulfone, PES) cladding ber was experimentally investigated. Simulation results for nonlinear interactions inside a microtoroid are also provided. In the second part, polymer coated toroidal microresonators were employed for observation of laser action. Owing to high quantum e ciency of the polymer, the observed lasing threshold has a very low value of 200 pJ/pulse despite free space excitation.Item Open Access Selective plasmonic control of excitons and their non-radiative energy transfer in colloidal semiconductor quantum dot solids(2009) Özel, TuncayTo date extensive research has proved that semiconductors and metals exhibit extraordinary optical properties in nano-dimensions compared to their bulk counterparts. For example, an interesting effect is observed in metal nanostructures/nanoparticles (NPs) that we form to obtain localized plasmons, with their optical response highly tuneable using the size effect. Another field of interest at the nanoscale is the investigation of light generation and harvesting using colloidal semiconductor quantum dot nanocrystals (NCs) that we synthesize in few nanometers, with their emission and absorption excitonic peaks conveniently tuneable using the size effect. In this thesis, we proposed and demonstrated the first accounts of selectively plasmonically-controlled colloidal quantum dot emitters assembled in innovative architectures, with a control achieved either through spatial selection or spectral selection. In the first set of designs, we developed for the first time plasmonic NC-composites that rely on spatially-selected plasmon-coupled CdTe NC-monolayers interspaced with respect to Au NP-monolayers in a repeating three-dimensional layer-by-layer architecture. In these bottom-up designs of hybrid nanocomposites, the photoluminescence kinetics is strongly modified and a record quantum efficiency of 30% is achieved for such CdTe NC solids. In the second set of designs, we showed the first spectrally-selected plasmon-coupling of surfaceemitting CdS NCs using optimized Ag NP deposits. This architecture allowed for the surface-state emission to be selectively enhanced while the interband emission is simultaneously suppressed in the same plasmon-coupled NCs, leading to the strongest surface-state emission from such CdS NCs reported with respect to their interband emission (with a >12-fold enhancement). Yet another important proximity phenomenon effective among quantum dot emitters is the Förster-type non-radiative resonance energy transfer (ET), in which excitonic excitation energy of the donor-NCs is non-radiatively transferred to the acceptor-NCs via dipole-dipole coupling. In the third set of our designs, we combined two fundamental proximity mechanisms of plasmon coupling and non-radiative energy transfer in the same NC solids. In plasmonic ET, we reported for the first time selectively plasmon-coupling of NC-acceptors and then that of NC-donors in the ET pair, both of which result in substantial enhancement of the acceptor emission with respect to ET with no plasmon coupling (with a maximum of 2-fold enhancement) as verified by their steadystate and time-resolved photoluminescence. This concept of spectrally/spatiallyselective plasmon coupling in quantum dots paves a new path for devices and sensors in nanophotonics.