Browsing by Subject "Nanoplatelet"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Impurity incorporation and exchange interactions in Co2+-doped CdSe/CdS core/shell nanoplatelets(American Institute of Physics, 2019) Fainblat, R.; Delikanlı, Savaş; Spee, L.; Czerny, T.; Işık, Furkan; Sharma, V. K.; Demir, Hilmi Volkan; Bacher, G.The intentional incorporation of transition metal impurities into colloidal semiconductor nanocrystals allows an extension of the host material’s functionality. While dopant incorporation has been extensively investigated in zero-dimensional quantum dots, the substitutional replacement of atoms in two-dimensional (2D) nanostructures by magnetic dopants has been reported only recently. Here, we demonstrate the successful incorporation of Co2+ ions into the shell of CdSe/CdS core/shell nanoplatelets, using these ions (i) as microscopic probes for gaining distinct structural insights and (ii) to enhance the magneto-optical functionality of the host material. Analyzing interatomic Co2+ ligand field transitions, we conclude that Co2+ is incorporated into lattice sites of the CdS shell, and effects such as diffusion of dopants into the CdSe core or diffusion of the dopants out of the heterostructure causing self-purification play a minor role. Taking advantage of the absorption-based technique of magnetic circular dichroism, we directly prove the presence of sp-d exchange interactions between the dopants and the band charge carriers in CdSe/Co2+:CdS heteronanoplatelets. Thus, our study not only demonstrates magneto-optical functionality in 2D nanocrystals by Co2+ doping but also shows that a careful choice of the dopant type paves the way for a more detailed understanding of the impurity incorporation process into these novel 2D colloidal materials.Item Open Access Nanocrystal light-emitting diodes based on type II nanoplatelets(Elsevier BV, 2018) Liu, B.; Delikanli S.; Gao, Y.; Dede, D.; Gungor K.; Demir, Hilmi VolkanColloidal semiconductor nanoplatelets (NPLs) have recently emerged as a new family of semiconductor nanocrystals with distinctive structural and electronic properties originating from their atomically flat architecture. To date, type II NPLs have been demonstrated to possess great potential to optoelectronic applications, such as solar cells and lasers. Herein, nanocrystal light-emitting diodes (LEDs) based on type II NPLs have been developed. The photoluminescence quantum yield of these used type II NPL (CdSe/CdSe0.8Te0.2 core/crown) is close to 85%. By exploring an effective inverted structure with the dual hole transport layer, the NPL-LEDs exhibit i) a turn-on voltage of 1.9 V, ii) a maximum luminance of 34520 cd m−2, iii) an EQE of 3.57% and a PE of 9.44 lm W−1. Compared with previous NPL-based LEDs, the performance of our devices is remarkably enhanced. For example, the luminance is 350-fold higher than the best inverted NPL-based LED. The findings may not only represent a significant step for NPL-based LEDs, but also unlock a new opportunity that this class of type II NPLs materials are promising for developing high-performance LEDs.Item Open Access Oriented colloidal quantum wells: Pushing the limits, breaking records(META Conference, 2023) Demir, Hilmi Volkan; Lalanne, P.; Zouhdi, S.We introduce a powerful, large-area self-assembly technique for orienting colloidal quantum wells in all face-down configuration. We demonstrate three-dimensional constructs of such oriented self-assemblies with monolayer precision. We present the most recent examples of LEDs and lasers using these oriented assemblies for lighting and displays. Here we also show record high efficiency from their LEDs and record thin gain medium from their laser structures. These solution-processed quantum wells hold great promise to challenge their epitaxial thin-film counterparts in semiconductor optoelectronics. © 2023, META Conference. All rights reserved.