BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Nanopatch antenna"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    ItemOpen Access
    Hybrid dielectric-plasmonic nanoantenna with multiresonances for subwavelength photon sources
    (American Chemical Society, 2023-03-15) Dmitriev, P. A.; Lassalle, E.; Ding, L.; Pan, Z.; Neo, D. C. J.; Valuckas, V.; Paniagua-D., R.; Yang, J. K. W.; Demir, Hilmi Volkan; Kuznetsov, A. I.
    The enhancement of the photoluminescence of quantum dots induced by an optical nanoantenna has been studied considerably, but there is still significant interest in optimizing and miniaturizing such structures, especially when accompanied by an experimental demonstration. Most of the realizations use plasmonic platforms, and some also use all-dielectric nanoantennas, but hybrid dielectric-plasmonic (subwavelength) nanostructures have been very little explored. In this paper, we propose and demonstrate single subwavelength hybrid dielectric-plasmonic optical nanoantennas coupled to localized quantum dot emitters that constitute efficient and bright unidirectional photon sources under optical pumping. To achieve this, we devised a silicon nanoring sitting on a gold mirror with a 10 nm gap in-between, where an assembly of colloidal quantum dots is embedded. Such a structure supports both (radiative) antenna mode and (nonradiative) gap mode resonances, which we exploit for the dual purpose of out-coupling the light emitted by the quantum dots into the far-field with out-of-plane directivity, and for enhancing the excitation of the dots by the optical pump. Moreover, almost independent control of the resonance spectral positions can be achieved by simple tuning of geometrical parameters such as the ring inner and outer diameters, allowing us to conveniently adjust these resonances with respect to the quantum dots emission and absorption wavelengths. Using the proposed architecture, we obtain experimentally average fluorescence enhancement factors up to 654× folds mainly due to high radiative efficiencies, and associated with a directional emission of the photoluminescence into a cone of ±17° in the direction normal to the sample plane. We believe the solution presented here to be viable and relevant for the next generation of light-emitting devices.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy

We collect and process your personal information for the following purposes: Authentication, Preferences, Acknowledgement and Statistics.
To learn more, please read our
privacy policy.

Customize