Browsing by Subject "Nanomagnetics"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access 50 nm Hall Sensors for Room Temperature Scanning Hall Probe Microscopy(Institute of Physics Publishing, 2004) Sandhu, A.; Kurosawa, K.; Dede, M.; Oral, A.Bismuth nano-Hall sensors with dimensions ∼50nm × 50 nm were fabricated using a combination of optical lithography and focused ion beam milling. The Hall coefficient, series resistance and optimum magnetic field sensitivity of the sensors were 4 × 10-4 Ω/G, 9.1kΩ and 0.8G/√Hz, respectively. A 50nm nano-Bi Hall sensor was installed into a room temperature scanning Hall probe microscope and successfully used for directly imaging ferromagnetic domains of low coercivity garnet thin films.Item Open Access DC shift based image reconstruction for magnetic particle imaging(IEEE, 2017) Sarıca, Damla; Demirel, Ömer Burak; Sarıtaş, Emine ÜlküMagnetic Particle Imaging (MPI) is a new imaging technology that images the spatial distribution of iron oxide nanoparticles. Since the magnetic field strength that can be safely applied in MPI is limited, the field-of-view (FOV) must be divided into partial FOVs. Because the excitation magnetic field causes direct feedthrough on the receiver coil, the excitation frequency must be filtered out of the MPI signal. During this process, the nanoparticle signal at the same frequency is also lost, as a result of which each partial FOV experiences different levels of DC shift. In the standard MPI image reconstruction, these DC shifts are calculated from neighboring overlapping partial FOVs. Here, we propose a novel method that directly reconstructs the MPI image from the calculated DC shift values. Especially in the case of low bandwidth signal acquisitions, this method yields higher resolution images when compared to the standard method. The simulation results at various signal-to-noise ratios (SNR) show that the proposed method produces 6-8 dB increase in peak SNR and yields images that closely match the ideal image.Item Open Access Highly monodisperse low-magnetization magnetite nanocubes as simultaneous T1–T2 MRI contrast agents(Royal Society of Chemistry, 2015) Sharma, V. K.; Alipour, A.; Soran-Erdem, Z.; Aykut, Z. G.; Demir, Hilmi VolkanWe report the first study of highly monodisperse and crystalline iron oxide nanocubes with sub-nm controlled size distribution (9.7 ± 0.5 nm in size) that achieve simultaneous contrast enhancement in both T1- and T2-weighted magnetic resonance imaging (MRI). Here, we confirmed the magnetite structure of iron oxide nanocubes by X-ray diffraction (XRD), selected area electron diffraction (SAED) pattern, optical absorption and Fourier transformed infrared (FT-IR) spectra. These magnetite nanocubes exhibit superparamagnetic and paramagnetic behavior simultaneously by virtue of their finely controlled shape and size. The magnetic measurements reveal that the magnetic moment values are favorably much lower because of the small size and cubic shape of the nanoparticles, which results in an enhanced spin canting effect. As a proof-of-concept demonstration, we showed their potential as dual contrast agents for both T1- and T2-weighted MRI via phantom studies, in vivo imaging and relaxivity measurements. Therefore, these low-magnetization magnetite nanocubes, while being non-toxic and bio-compatible, hold great promise as excellent dual-mode T1 and T2 contrast agents for MRI. © 2014 The Royal Society of Chemistry.Item Open Access Image reconstruction for Magnetic Particle Imaging using an Augmented Lagrangian Method(IEEE, 2017) Ilbey S.; Top C.B.; Çukur, Tolga; Sarıtaş, Emine Ülkü; Guven H.E.Magnetic particle imaging (MPI) is a relatively new imaging modality that images the spatial distribution of superparamagnetic iron oxide nanoparticles administered to the body. In this study, we use a new method based on Alternating Direction Method of Multipliers (a subset of Augmented Lagrangian Methods, ADMM) with total variation and l1 norm minimization, to reconstruct MPI images. We demonstrate this method on data simulated for a field free line MPI system, and compare its performance against the conventional Algebraic Reconstruction Technique. The ADMM improves image quality as indicated by a higher structural similarity, for low signal-to-noise ratio datasets, and it significantly reduces computation time. © 2017 IEEE.Item Open Access Newly designed silver coated-magnetic, monodisperse polymeric microbeads as SERS substrate for low-level detection of amoxicillin(Elsevier, 2016-09) Kibar, G.; Topal, A. E.; Dana, A.; Tuncel, A.We report the preparation of silver-coated magnetic polymethacrylate core-shell nanoparticles for use in surface-enhanced Raman scattering based drug detection. Monodisperse porous poly (mono-2-(methacryloyloxy)ethyl succinate-co-glycerol dimethacrylate), poly (MMES-co-GDMA) microbeads of ca. 5 μm diameter were first synthesized through a multistage microsuspension polymerization technique to serve as a carboxyl-bearing core region. Microspheres were subsequently magnetized by the co-precipitation of ferric ions, aminated through the surface hydroxyl groups and decorated with Au nanoparticles via electrostatic attraction. An Ag shell was then formed on top of the Au layer through a seed-mediated growth process, resulting in micron-sized monodisperse microbeads that exhibit Raman enhancement effects due to the roughness of the Ag surface layer. The core-shell microspheres were used as a new substrate for the detection of amoxicillin at trace concentrations up to 10-8 M by SERS. The proposed SERS platform can be evaluated as a useful tool for the follow-up amoxicillin pollution and low-level detection of amoxicillin in aqueous media.Item Open Access Peptide functionalized superparamagnetic iron oxide nanoparticles as MRI contrast agents(The Royal Society of Chemistry, 2011) Sulek, S.; Mammadov, B.; Mahcicek, D. I.; Sozeri, H.; Atalar, Ergin; Tekinay, A. B.; Güler, Mustafa O.Magnetic resonance imaging (MRI) attracts great attention in cellular and molecular imaging due to its non-invasive and multidimensional tomographic capabilities. Development of new contrast agents is necessary to enhance the MRI signal in tissues of interest. Superparamagnetic iron oxide nanoparticles (SPIONs) are used as contrast agents for signal enhancement as they have revealed extraordinary magnetic properties at the nanometre size and their toxicity level is very low compared to other commercial contrast agents. In this study, we developed a new method to functionalize the surface of SPIONs. Peptide amphiphile molecules are used to coat SPIONs non-covalently to provide water solubility and to enhance biocompatibility. Superparamagnetic properties of the peptide-SPION complexes and their ability as contrast agents are demonstrated. In vitro cell culture experiments reveal that the peptide-SPION complexes are biocompatible and are localized around the cells due to their peptide coating.Item Open Access Self-assembled one-dimensional soft nanostructures(Royal Society of Chemistry, 2010) Toksoz, S.; Acar, H.; Güler, Mustafa O.The self-assembly process is a bottom-up approach and is the spontaneous aggregation of many different subunits into well-defined functional structures with varying properties. Self-assembly is an attractive method to develop one-dimensional nanostructures and is controlled by many factors including temperature, pH and electrolyte addition. Novel self-assembled one-dimensional nanostructures are finding applications in regenerative medicine and electronics as well as in fabrication of nanoscale electronic, mechanic, magnetic, optical, and combinatorial devices. Their utility comes from their high ratio of surface area to volume, and their quantum-confinement effects. This paper reviews one-dimensional self-assembled organic nanostructures classified according to the noncovalent forces acting on their formation.