Browsing by Subject "Nanofibers."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Cyclodextrin functionalized nanofibers via electrospinning(2014) Çelebioğlu, AslıElectrospinning is a commonly studied and widely applied technique for generating nanofibers, with a diameter ranging from several tens of nanometers to a few micrometers. The low-cost, simple set-up, relatively high production rate and reproducibility increase the interests on this method in both academia and industry. Electrospun nanofibers are produced from a broad range of materials with extremely high surface area, very light-weight, nano-porous features and distinct physical/mechanical properties. The general talk in this technique focuses on the production of nanofibers from polymer base materials. However, very recent studies demonstrated that, it is also possible to obtain nanofibers from non-polymeric systems. For this novel development in electrospinning researches, we have achieved to generate nanofibers from cyclodextrins (CD) without using a polymeric template. CD are cyclic oligosaccharides consisting of α-(1,4)-linked glucopyranose units. The truncated cone shape structure of CD provides a favorable place for various kinds of organic molecules to form non-covalent host-guest inclusion complexes (IC). The enhancements and progressing at the guest molecules property and situation, creating with the inclusion complexation, make CD applicable in variety of areas including filtration, pharmaceuticals, cosmetics, functional foods, textiles, analytic chemistry etc. In this thesis, we report on the electrospinning of CD nanofibers, represent their functionalization and potential applications. Firstly, we produced CD nanofibers from three different chemically modified CD types (hydroxypropyl-β-cyclodextrin (HPβCD), hydroxypropyl-γ-cyclodextrin (HPγCD) and methyl-β-cyclodextrin (MβCD)). Afterwards, the electrospinning of native CD (α-CD, β-CD and γ-CD) nanofibers was achieved. The molecular entrapment capability of CD nanofibers was shown by capturing toxic volatile organic compounds (VOCs) from the surrounding. As the next step, the polymer-free nanofibers were obtained from the cyclodextrin inclusion complexes (CD-IC) with antibacterial agent, vanillin and essential oils. Here, we have also indicated applicability of CD-IC nanofibers as a result of antibacterial test. The functionalization of the CD nanofibers was continued with the green and one-step synthesis of metal nanoparticles (Ag-NP, Au-NP and Pd-NP) incorporated nanofibers, in which CD were used as reducing, stabilizing agent and fiber template. Even, the antibacterial, SERS and catalyst potential of these CD based nanofibers were demonstrated for the related nanoparticles. Our research is expanded to a new stage by the production of insoluble poly-CD nanofibers. We have worked on different crosslinking agents to attain insoluble poly-CD nanofibers with uniform morphology. After the optimization of poly-CD nanofibers, the most durable polyCD nanowebs were selected for further analysis and evaluation of the filtration performance in liquid environment. Within poly-CD nanofibers, we have eliminated the solubility challenge of CD nanofibers that restrict their usage. So, we assume that, poly-CD nanofibers will lead-up to generation of new advances for practices of CD nanofibers. All studies showed that, the self-assembly and self-aggregation property of CD are the prior requirements for the electrospinnability of these small molecules. To conclude, very intriguing materials were obtained by integrating large surface area of nanofibers with specific host-guest inclusion complexation capability and non-toxic, biocompatible nature of the CD. Moreover, CD molecules, which are generally used in the powder form, were rendered into more applicable nanofibers form that will represent ease during their usage.Item Open Access Development of multifunctional nanofibrous materials via electrospinning(2014) Kayacı, FatmaElectrospun nanofibers are very attractive for many applications including functional textile, biomedical, energy, sensor, biotechnology, food packaging and filtration due to their large surface area to volume ratio, pores in nano range, high encapsulation efficiency, low basis weight and design flexibility for physical/chemical modification. Cyclodextrins (CD) are applicable in several industries such as pharmaceutical, cosmetic, textile, functional food and filtration owing to their intriguing ability to form non-covalent host-guest inclusion complexes (IC) with a variety of molecules. Furhermore, atomic layer deposition (ALD) technique can be effectively used to deposit metal oxides onto temperature-sensitive polymeric substrates. In this dissertation, initially, CD-IC of bioactive compounds (vanillin, eugenol, geraniol, triclosan) having antibacterial and/or antioxidant properties were incorporated into electrospun nanofibers via electrospinning. Higher thermal stability, controlled/sustained release, enhanced solubility and functionality of these compounds have been provided by CD-IC. These specific properties of CD-IC have been combined with high surface area and nanoporous structure of electrospun nanofibers. Thereby, the resulting functional nanofibrous materials can be quite applicable in active food packaging in order to prevent foodborne diseases by providing safety/quality of nutrition and extending shelf life of food. On the other hand, CD incorporated electrospun nanofibers have also been developed for efficient removal of unpleasant odors, hazardous organic waste molecules from air by taking advantages of not only high surface area and nanoporous structure of nanofibers but also IC capability of CD. Since CD are water soluble, CD polymer (CDP) coated onto nanofibers have been also obtained for molecular filtration of polyaromatic hydrocarbons from aqueous environment. Moreover, metal oxides (ZnO, TiO2) have been deposited onto electrospun nanofibers via ALD in order to develop efficient and energy saving innovative nanofibrous membrane materials for water purification and waste treatment. Thus, organic pollutants in water have been effectively disintegrated by photocatalytic activity of these nanofibrous filtering materials having high surface area. Overall, the multifunctional electrospun nanofibrous materials have been improved by incorporating CD-IC or CD into the fiber matrix; by coating either CDP or metal oxides (ZnO, TiO2) onto fiber surface to enhance possible applications of nanofibers for filtration, food packaging, functional textiles, etc.Item Open Access Electrospinning of biocompatible polymeric nanofibers functionalized with cyclodextrin inclusion complex(2012) Aytaç, ZeynepElectrospinning is a simple, versatile and cost-effective method to produce nanofibers. Electrospun nanofibers have high surface area to volume ratio and nanoporous structure. Moreover, electrospun nanofibers could be functionalized with additives to extend their application areas. Cyclodextrins (CDs) are cyclic oligosaccharides and have truncated-cone shape structure. Due to their hydrophobic cavity, CDs have ability to form inclusion complex (IC) with a variety of molecule. In our study, we functionalized electrospun nanofibers with CDs and CD-ICs. In the first part, we successfully produced hydroxypropyl cellulose- (HPC), carboxymethyl cellulose- (CMC) and alginate-based nanofibers via electrospinning. Then we functionalized these nanofibers with CDs. The morphological characterizations of nanofibers were performed through scanning electron microscopy (SEM). Here, we have combined the properties of both electrospun nanofibers and CDs, and these nanofibers could be used in drug delivery, wound healing and tissue engineering applications. In the second part, we prepared IC of sulfisoxazole (SFS) (hydrophobic drug) with hydroxypropyl-beta-cyclodextrin (HPβCD) (SFS/HPβCD-IC). Then electrospinning of SFS/HPβCD-IC incorporating hydroxypropyl cellulose (HPC) nanofibers were performed (SFS/HPβCD-IC-HPC-NFs). In the third part of our study, we produced IC of α-tocopherol (α-TC) (antioxidant molecule) with beta-cyclodextrin (β-CD) (α-TC/β-CD-IC); and polycaprolactone (PCL) nanofibers incorporating α-TC/β-CD-IC was obtained via electrospinning (α- TC/β-CD-PCL-NFs). In the fourth part, IC of allyl isothiocyanate (AITC) (antibacterial compound) with β-CD (AITC/β-CD-IC) was produced. The electrospinning of AITC/β-CD-IC incorporating polyvinyl alcohol (PVA) nanofibers was carried out (AITC/β-CD-IC-PVA-NFs). In the fifth part, IC of quercetin (QU) (antioxidant molecule) with β-CD (QU/β-CD-IC) was prepared; and polyacrylic acid (PAA) nanofibers incorporating QU/β-CD-IC was obtained via electrospinning (QU/β-CD-IC-PAA-NFs). The structural and thermal characterizations of SFS/HPβCD-IC-HPC-NFs, α-TC/β-CD-PCL-NFs, AITC/β- CD-IC-PVA-NFs and QU/β-CD-IC-PAA-NFs were carried out by scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The amount of released molecules were determined via liquid chromatography-mass spectroscopy (LC-MS) for SFS/HPβCD-IC-HPC-NFs; high performance liquid chromatography (HPLC) for α-TC/β-CD-PCL-NFs and QU/β-CD-IC-PAA-NFs and gas chromatography-mass spectrometry (GC-MS) for AITC/β-CD-IC-PVANFs. The antioxidant activity of α-TC/β-CD-PCL-NFs and QU/β-CD-IC-PAANFs was investigated by using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Moreover, α-TC/β-CD-PCL-NFs released great proportion of α-TC after exposing UV light. Thus, α-TC/β-CD-PCL-NFs exhibited quite high photostability. The antibacterial activity of AITC/β-CD-IC-PVA-NFs was evaluated by colony counting method against Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus). In brief, we concluded that SFS/HPβCD-ICHPC-NFs, α-TC/β-CD-PCL-NFs, AITC/β-CD-IC-PVA-NFs and QU/β-CD-ICPAA-NFs are promising materials for drug delivery and wound healing applications.