Browsing by Subject "Nanoelectronics"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Chiral single-wall gold nanotubes(American Physical Society, 2004) Senger, R. T.; Dag, S.; Çıracı, SalimThe formation of freestanding and tip-suspended chiral-wall (n,m) nanotubes, which were composed of helical atomic strands, from gold atoms was investigated using first-principles calculations, where (n,m) notation defines the structure of the tube. The tubes with 3≤n≤5 were found to be stable and exhibited electronic and transport properties investigated. The (5,3) gold tube was energetically the most favourable. It was observed from the quantum ballistic conductance, band structure and charge density analysis that the current on these wires was less chiral, and no direct correlation between the numbers of conduction channels and helical strands was found.Item Open Access Nanostructured materials and devices for sensing and energy harvesting applications(2015-08) Kanık, MehmetA closer look into the fundamental challenges of the modern world reveals that the increasing demand for energy threatens the evolution of science and technology. Energy-efficiency is thus a fundamental issue in engineering nano-devices. An important path to achieve high efficiency is to convert the mechanical energy into electrical energy using piezoelectric and triboelectric energy harvesting circuitries, hence enabling self-powered systems at nanoscale. The utilization of novel piezoelectric and triboelectric energy harvesting materials introduces the opportunity of manufacturing flexible, wearable and stretchable self-powered devices. In this thesis, we introduced a new fabrication technique, new strategies and practical approaches for developing high performance triboelectric and piezoelectric materials and devices for flexible electronics, artificial skin and energy harvesting applications. The first part of the thesis focuses on the development of piezoelectric nanoribbons. Poly (vinylidene fluoride) and its copolymer Poly (vinylidene fluoride)-co-tri (fluoroethylene) were used to fabricate spontaneously high piezoelectric nanoribbons. We measured the record-high piezoelectric charge coefficient from our ribbons, because the high stress and high temperature used in the fabrication can enhance their properties. In addition, proof of principle devices for energy harvesting and sensing were fabricated using nanoribbons. The achievements in this part of the thesis can be listed as: i) We obtained extraordinary high aspect ratio, globally oriented, polymer encapsulated, and high piezoelectric microribbon and nanoribbon arrays. ii) Due to process conditions (shear stress and temperature) used in thermal fiber drawing, as-produced micro and nanoribbons contain high amount of polar phase without requiring any electrical poling. iii) We developed a new technique for characterizing and analyzing multiferroic characteristics of nano-objects, which consist of parallel evaluation of instrumental, numerical and analytical data. iv) To our knowledge, we achieved the highest piezoelectric charge coefficient from our ribbons in the literature. v) We enhanced stability of the piezoelectric ribbons by increasing the Curie temperature above its melting point due to processing conditions. vi) We observed and explained a new phase transformation mechanism in polymer piezoelectric ribbons. vii) The state-of-the-art ab initio calculations, which explain the phase transformation mechanism of molecules during the fiber drawing with the effect of shear, tensile forces and temperature, were included in detail. The second part is about developing high energy output triboelectric generators. A high performance multi-layered triboelectric generator was developed using chalcogenide nanostructures. This part of the thesis details the following achievements: i) We demonstrated that not only polymer, but also semiconductor chalcogenide materials can be used in triboelectric applications, for the first time. ii) For the first time, we proposed and demonstrated that the fluorination of nanostructured surfaces increases triboelectric performance significantly. iii) We introduced a multi-layered triboelectric generator which is very promising for real applications such as acoustic wave and vibration detection, and energy harvesting with very high power output (0.51 Watt) in comparison with the literature. iv) We used a 3D printing technique to produce our device, which is low-cost and appropriate for rapid prototyping and mass production. v) We explained the device theory for the triboelectric nanogenerator, which aligned well with our experimental results.Item Embargo Promising anisotropic mechanical, electronic, and charge transport properties of 2D InN alloys for photocatalytic water splitting(Elsevier, 2023-11-30) Özbey, Doğukan Hazar; Kilic, M. E.; Durgun, EnginTwo-dimensional (2D) materials with unique physical properties lead to new possibilities in future nanomaterial-based devices. Among them, 2D structures suitable to be the solar-driven catalyst for water-splitting reactions have become excessively important since the demand for clean energy sources has increased. Apart from the conventional crystals with well-known symmetries, recent studies showed that materials with exotic decorations could possess superior features in these kinds of applications. In this respect, we report novel 2D tetrahexagonal (th-) InN crystal and its ordered alloys In0.33 X0.67N (X = Al, Ga) that can be utilized as effective catalysts for water splitting reactions. Proposed structures possess robust energetic, dynamical, thermal, and mechanical stability with a versatile mechanical response. After a critical tensile strain value, all monolayers exhibit strain-induced negative Poisson's ratio in a particular crystal direction, making them half-auxetic materials. The examined materials are indirect semiconductors with desired band gaps and band edge positions for water-splitting applications. Due to their structural anisotropy, they have direction-dependent mobility that can keep the photogenerated charge carriers separated by reducing their recombination probability, which boosts the photocatalytic process. High absorption capacity in the wide spectral range underlines their potential performance. The versatile mechanical, electronic, and optical properties of 2D th-InN and its alloys, together with their remarkable structural stability, indicate that they can appropriately be exploited in the future for water splitting applications.Item Open Access Spin filtering in a quantum ring with Rashba coupling(IEEE, 2010) Tanatar, Bilal; Moldoveanu V.We study the effect of Rashba spin-orbit coupling on the spin interference in a non-interacting one-dimensional ring connected to two lead theoretically within the non-equilibrium Greens' function formalism. We compute the charge and spin currents and analyze their Aharonov-Bohm oscillations. The geometry of the system is conveniently described by the angle δ between the two leads. We show that for δ=180° (i.e for symmetrically coupled leads) a good tutering of up or down spin orientation is obtained around half-integer multiples of Φ/Φ0. These particular flux values correspond to degeneracy points for clockwise and counter-clockwise propagating state related to the same spin orientation in the local spin frame of the ring. In contrast, for the asymmetric coupling, i.e., δ=135° the filter efficiency is maximum around integer multiples of Φ/Φ0. The numerical results suggest that the spin filtering is obtained when the clockwise or counter-clockwise states interfere destructively. The spin filtering regime is stable against variations of the bias applied on the system. ©2010 IEEE.