Browsing by Subject "Nano-fibrous"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Microalgae immobilized by nanofibrous web for removal of reactive dyes from wastewater(American Chemical Society, 2015) Keskin, N. O. S.; Celebioglu A.; Uyar, Tamer; Tekinay, T.In this study, we have developed microalgae immobilized by polysulfone nanofibrous web (microalgae/PSU-NFW) for the removal of reactive dyes (Remazol Black 5 (RB5) and Reactive Blue 221 (RB221). Here, an electrospinning technique was used to produce polysulfone nanofibrous web (PSU-NFW) as a free-standing material on which microalgae Chlamydomona reinhardtii was immobilized on PSU-NFW. The decolorization capacities of microalgae/PSU-NFW were significantly higher than that of pristine PSU-NFW. The decolorization rate for RB5 was calculated as 72.97 ± 0.3% for microalgae/PSU-NFW, whereas it was 12.36 ± 0.3% for the pristine PSU-NFW. In the case of RB221 solution, decolorization rates were achieved as 30.2 ± 0.23 and 5.51 ± 0.4% for microalgae/PSU-NFW and pristine PSU-NFW, respectively. Reusability tests revealed that microalgae/PSU-NFW can be used in at least three successive decolorization steps in which the decolorization rate of the RB5 was found to be 51 ± 0.69% after the third reuse step. These results are promising and therefore suggest that microalgae/PSU-NFW could be applicable for the decolorization of dyes because of their versatility and reusability.Item Open Access Removal of a reactive dye and hexavalent chromium by a reusable bacteria attached electrospun nanofibrous web(Royal Society of Chemistry, 2015) Keskin, N. O. S.; Celebioglu A.; Sarioglu O.F.; Ozkan A.D.; Uyar, Tamer; Tekinay, T.A contaminant resistant Lysinibacillus sp. NOSK was isolated from a soil sample and its Reactive Black 5 (RB5) and Cr(vi) removal efficiencies were investigated as a function of changes in the initial pH values, temperature, static/shaking conditions, reactive dye and Cr(vi) concentrations. In this study, an electrospun polysulfone nanofibrous web (PSU-NFW) was found to be effective in attachment of bacterial cells. Bacteria attached PSU-NFWs (bacteria/PSU-NFW) have shown highly efficient removal of RB5, as 99.7 ± 0.9% and 35.8 ± 0.4% for the pristine PSU-NFW. Moreover, the highest Cr(vi) removal efficiencies measured were 98.2 ± 0.6% for bacteria attached PSU-NFW and 32.6 ± 0.6% for the pristine PSU-NFW. Simultaneous removal of RB5 and Cr(vi) were also investigated. Reusability test results indicate that, bacteria/PSU-NFW can be reused for at least 7 cycles with 28.1 ± 0.6% and 66.7 ± 0.8% removal efficiencies for RB5 and Cr(vi), respectively.