Browsing by Subject "Mutual informations"
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Item Open Access Bounds on the capacity of random insertion and deletion-additive noise channels(IEEE, 2013) Rahmati, M.; Duman, T. M.We develop several analytical lower bounds on the capacity of binary insertion and deletion channels by considering independent uniformly distributed (i.u.d.) inputs and computing lower bounds on the mutual information between the input and output sequences. For the deletion channel, we consider two different models: i.i.d. deletion-substitution channel and i.i.d. deletion channel with additive white Gaussian noise (AWGN). These two models are considered to incorporate effects of the channel noise along with the synchronization errors. For the insertion channel case, we consider Gallager's model in which the transmitted bits are replaced with two random bits and uniform over the four possibilities independently of any other insertion events. The general approach taken is similar in all cases, however the specific computations differ. Furthermore, the approach yields a useful lower bound on the capacity for a wide range of deletion probabilities of the deletion channels, while it provides a beneficial bound only for small insertion probabilities (less than 0.25) of the insertion model adopted. We emphasize the importance of these results by noting that: 1) our results are the first analytical bounds on the capacity of deletion-AWGN channels, 2) the results developed are the best available analytical lower bounds on the deletion-substitution case, 3) for the Gallager insertion channel model, the new lower bound improves the existing results for small insertion probabilities. © 1963-2012 IEEE.Item Open Access A comprehensive methodology for determining the most informative mammographic features(2013) Wu, Y.; Alagoz O.; Ayvaci, M.U.S.; Munoz Del Rio, A.; Vanness, D.J.; Woods, R.; Burnside, E.S.This study aims to determine the most informative mammographic features for breast cancer diagnosis using mutual information (MI) analysis. Our Health Insurance Portability and Accountability Act-approved database consists of 44,397 consecutive structured mammography reports for 20,375 patients collected from 2005 to 2008. The reports include demographic risk factors (age, family and personal history of breast cancer, and use of hormone therapy) and mammographic features from the Breast Imaging Reporting and Data System lexicon. We calculated MI using Shannon's entropy measure for each feature with respect to the outcome (benign/malignant using a cancer registry match as reference standard). In order to evaluate the validity of the MI rankings of features, we trained and tested naïve Bayes classifiers on the feature with tenfold cross-validation, and measured the predictive ability using area under the ROC curve (AUC). We used a bootstrapping approach to assess the distributional properties of our estimates, and the DeLong method to compare AUC. Based on MI, we found that mass margins and mass shape were the most informative features for breast cancer diagnosis. Calcification morphology, mass density, and calcification distribution provided predictive information for distinguishing benign and malignant breast findings. Breast composition, associated findings, and special cases provided little information in this task. We also found that the rankings of mammographic features with MI and AUC were generally consistent. MI analysis provides a framework to determine the value of different mammographic features in the pursuit of optimal (i.e., accurate and efficient) breast cancer diagnosis. © 2013 Society for Imaging Informatics in Medicine.Item Open Access Karşılıklı bilgi ölçütü kullanılarak giyilebilir hareket duyucu sinyallerinin aktivite tanıma amaçlı analizi(IEEE, 2014-04) Dobrucalı, Oğuzcan; Barshan, BillurGiyilebilir hareket duyucuları ile insan aktivitelerinin saptanmasında, uygun duyucu yapılanışının seçimi önem taşıyan bir konudur. Bu konu, kullanılacak duyucuların sayısının, türünün, sabitlenecekleri konum ve yönelimin belirlenmesi problemlerini içermektedir. Literatürde konuyla ilgili önceki çalışmalarda araştırmacılar, kendi seçtikleri duyucu yapılanışları ile diğer olası duyucu yapılanışlarını, söz konusu yapılanışlar ile insan aktivitelerini ayırt etme başarımlarına göre karşılaştırmışlardır. Ancak, söz konusu ayırt etme başarımlarının, kullanılan öznitelikler ve sınıflandırıcılara bağlı olduğu yadsınamaz. Bu çalışmada karşılıklı bilgi ölçütü kullanılarak duyucu yapılanışları, duyuculardan kaydedilen ham ölçümlerin zaman uzayındaki dağılımlarına göre belirlenmektedir. Bedenin farklı noktalarında bulunan ivmeölçer, dönüölçer ve manyetometrelerin ölçüm eksenleri arasından, gerçekleştirilen insan aktiviteleri hakkında en çok bilgi sağlayanları saptanmıştır.Item Open Access Learning traffic congestion by contextual bandit problems for optimum localization(IEEE, 2017) Şahin, Ümitcan; Yücesoy, V.; Koç, A.; Tekin, CemOptimum localization problem, which has a wide range of application areas in real life such as emergency services, command and control systems, warehouse localization, shipment planning, aims to find the best location to minimize the arrival, response or return time which might be vital in some applications. In most of the cases, uncertainty in traffic is the most challenging issue and in the literature generally it is assumed to obey a priori known stochastic distribution. In this study, problem is defined as the optimum localization of ambulances for emergency services and traffic is modeled to be Markovian to generate context data. Unlike the solution methods in the literature, there exists no mutual information transfer between the model and solution of the problem; thus, a contextual multi-armed bandit learner tries to determine the underlying traffic with simple assumptions. The performance of the bandit algorithm is compared with the performance of a classical estimation method in order to show the effectiveness of the learning approach on the solution of the optimum localization problem.Item Open Access A note on polarization martingales(IEEE, 2014) Arıkan, ErdalPolarization results rely on martingales of mutual information and entropy functions. In this note an alternative formulation is considered where martingales are constructed on sample functions of the entropy function.Item Open Access Object rigidity and reflectivity identification based on motion analysis(IEEE, 2010) Zang, D.; Schrater P.R.; Doerschner, KatjaRigidity and reflectivity are important properties of objects, identifying these properties is a fundamental problem for many computer vision applications like motion and tracking. In this paper, we extend our previous work to propose a motion analysis based approach for detecting the object's rigidity and reflectivity. This approach consists of two steps. The first step aims to identify object rigidity based on motion estimation and optic flow matching. The second step is to classify specular rigid and diffuse rigid objects using structure from motion and Procrustes analysis. We show how rigid bodies can be detected without knowing any prior motion information by using a mutual information based matching method. In addition, we use a statistic way to set thresholds for rigidity classification. Presented results demonstrate that our approach can efficiently classify the rigidity and reflectivity of an object. © 2010 IEEE.Item Open Access Sensor-activity relevance in human activity recognition with wearable motion sensors and mutual information criterion(Springer, 2014) Dobrucalı Oğuzhan; Barshan, BillurSelecting a suitable sensor configuration is an important aspect of recognizing human activities with wearable motion sensors. This problem encompasses selecting the number and type of the sensors, configuring them on the human body, and identifying the most informative sensor axes. In earlier work, researchers have used customized sensor configurations and compared their activity recognition rates with those of others. However, the results of these comparisons are dependent on the feature sets and the classifiers employed. In this study, we propose a novel approach that utilizes the time-domain distributions of the raw sensor measurements. We determine the most informative sensor types (among accelerometers, gyroscopes, and magnetometers), sensor locations (among torso, arms, and legs), and measurement axes (among three perpendicular coordinate axes at each sensor) based on the mutual information criterion.Item Open Access Spatial mutual information and PageRank-Based contrast enhancement and Quality-Aware relative contrast measure(Institute of Electrical and Electronics Engineers Inc., 2016) Celik, T.This paper proposes a novel algorithm for global contrast enhancement using a new definition of spatial mutual information (SMI) of gray levels of an input image and PageRank algorithm. The gray levels are used to represent nodes in PageRank algorithm, and the weights between the nodes are computed according to their dependence and spatial spread over the image, which is quantified by using SMI. The rank vector of gray levels resulted from PageRank algorithm is used in mapping input gray levels to output. The damping factor of the PageRank algorithm is utilized to control the level of perceived global contrast on the output image. Furthermore, a new metric is proposed for image quality-Aware relative contrast measurement between input and output images. Experimental results show that the proposed algorithm consistently produces good results. © 1992-2012 IEEE.Item Open Access Successive cancellation decoding of polar codes for the two-user binary-input MAC(IEEE, 2013) Önay, SaygunThis paper describes a successive cancellation decoder of polar codes for the two-user binary-input multi-access channel that achieves the full admissible rate region. The polar code for the channel is generated from monotone chain rule expansions of mutual information terms.Item Open Access A synthesis-based approach to compressive multi-contrast magnetic resonance imaging(IEEE, 2017) Güngör, A.; Kopanoğlu, E.; Çukur, Tolga; Güven, H. E.In this study, we deal with the problem of image reconstruction from compressive measurements of multi-contrast magnetic resonance imaging (MRI). We propose a synthesis based approach for image reconstruction to better exploit mutual information across contrasts, while retaining individual features of each contrast image. For fast recovery, we propose an augmented Lagrangian based algorithm, using Alternating Direction Method of Multipliers (ADMM). We then compare the proposed algorithm to the state-of-the-art Compressive Sensing-MRI algorithms, and show that the proposed method results in better quality images in shorter computation time.