Browsing by Subject "Multiple sensors"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Multi-point single-antenna sensing enabled by wireless nested split-ring resonator sensors(Institute of Electrical and Electronics Engineers Inc., 2016) Ozbey, B.; Ertürk, V. B.; Kurc, O.; Altintas, A.; Demir, Hilmi VolkanIn this paper, simultaneous multi-point wireless sensing is proposed and demonstrated via multiple sensors in nested split-ring resonator (NSRR) geometry coupled to a single illuminator antenna. In this passive multi-point sensing system, each probe in the sensor array is assigned a non-overlapping spectral interval for frequency shift in response to local mechanical loading around a unique operating resonance frequency in the band of the antenna. Here, it is shown that the antenna is capable of capturing the responses from all probes in a single frequency sweep. Furthermore, the inter-coupling between the array elements and the effect of antenna illumination on the coupling are experimentally investigated in a systematic way. In addition, as a proof-of-concept real-life application in structural health monitoring, two NSRR sensors are located inside a concrete beam to monitor the strain forming on reinforcing bars, and this dual-probe system is demonstrated to record strain simultaneously via both of the embedded probes.Item Open Access Respiratory rate monitoring using infrared sensors(IEEE, 2016) Erden, Fatih; Çetin, A. EnisRespiratory rate is an essential parameter in many practical applications such as patient and elderly people monitoring. In this paper, a novel contact-free system is introduced to detect the human breathing activity. The system, which consists of two pyro-electric infrared (PIR) sensors, is capable of estimating the respiratory rate and detecting the sleep apnea. Sensors' signals corresponding to the thoracic movements of a human being are sampled using a microprocessor and analyzed on a general-purpose computer. Sampled signals are processed using empirical mode decomposition (EMD) and a new average magnitude difference function (AMDF) is used to detect the periodicity and the period of the processed signals. The resulting period, by using the fact that breathing is almost a periodic activity, is monitored as the respiratory rate. The new AMDF provides a way to fuse the data from the multiple sensors and generate a more reliable estimation of the respiratory rate.