Browsing by Subject "Multi-path routing"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Combined use of prioritized AIMD and flow-based traffic splitting for robust TCP load balancing(Springer, 2004) Alparslan, O.; Akar, N.; Karasan, E.In this paper, we propose an AIMD-based TCP load balancing architecture in a backbone network where TCP flows are split between two explicitly routed paths, namely the primary and the secondary paths. We propose that primary paths have strict priority over the secondary paths with respect to packet forwarding and both paths are rate-controlled using ECN marking in the core and AIMD rate adjustment at the ingress nodes. We call this technique "prioritized AIMD". The buffers maintained at the ingress nodes for the two alternative paths help us predict the delay difference between the two paths which forms the basis for deciding on which path to forward a new-coming flow. We provide a simulation study for a large mesh network to demonstrate the efficiency of the proposed approach in terms of the average per-flow goodput and byte blocking rates. © Springer-Verlag Berlin Heidelberg 2004.Item Open Access TCP flow aware adaptive path switching in diffserv enabled MPLS networks(Wiley, 2011-03-04) Alparslan, O.; Akar, N.; Karasan, E.We propose an adaptive flow-level multi-path routing-based traffic engineering solution for an IP backbone network carrying TCP/IP traffic. Incoming TCP flows are switched between two explicitly routed paths, namely the primary and secondary paths (PP and SP), for resilience and potential goodput improvement at the TCP layer. In the proposed architecture, PPs receive a preferential treatment over SPs using differentiated services mechanisms. The reason for this choice is not for service differentiation but for coping with the detrimental knock-on effect stemming from the use of longer SP that is well known for conventional network load balancing algorithms. Moreover, both paths are congestion-controlled using Explicit Congestion Notification marking at the core and Additive Increase Multiplicative Decrease rate adjustment at the ingress nodes. The delay difference between PP and SP is estimated using two per-egress rate-controlling buffers maintained at the ingress nodes for each path, and this delay difference is used to determine the path over which a new TCP flow will be routed. We perform extensive simulations using ns-2 in order to demonstrate the viability of the proposed distributed adaptive multi-path routing method in terms of per-flow TCP goodput. The proposed solution consistently outperforms the single-path routing policy and provides substantial per-flow goodput gains under poor PP conditions. Moreover, highest goodput improvements under the proposed scheme are achieved by flows that receive the lowest goodputs with single-path routing, while the performance of the flows with high goodputs with single-path routing does not deteriorate with the proposed path switching technique.