BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Multi-body dynamics modeling"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Learning based control compensation for multi-axis gimbal systems using inverse and forward dynamics
    (2021-09) Leblebicioğlu, Damla
    Unmanned aerospace vehicles (such as rockets, drones, and satellites) usually carry sensors as their primary payload. These sensors (i.e., electro-optical and/or infrared imaging cameras) are used for image processing, target tracking, surveillance, mapping, and providing high-resolution imagery for environmental surveys. It is crucial to obtain a steady image in all of those applications. This is typically accomplished by using multi-axis gimbal systems. This study concentrates on the modeling and control of a multi-axis gimbal system that will be mounted on a surface-to-surface tactical missile. A novel and fully detailed procedure is proposed to derive the nonlinear and highly coupled EOMs (Equations of Motion) of the two-axis gimbal system. Different from the existing works, Forward Dynamics of the two-axis gimbal system is modeled using multi-body dynamics modeling techniques. In addition to Forward Dynamics model, Inverse Dynamics model is generated to estimate the complementary torques associated with the state and mechanism-dependent, complex disturbances acting on the system. Forward and Inverse Dynamics models are used in Monte Carlo Simulations (MCSs) for Sensitivity Analysis. A multilayer perceptron (MLP) structure based disturbance compensator is implemented to cope with external and internal disturbances and parameter uncertainities through torque input channel. Comparisons with well known controllers such as cascaded PID, ADRC (Active Disturbance Rejection Control), Inverse Dynamics based controllers show that the NN (neural network)-based controller is more succesful in the full operational range without requiring any tuning or adjustment. Implementation of MLP assisted closed-loop control with simulations using Simulink® are performed. Finally, proposed control algorithms are tested on the physical system by using Simulink® Real-Time (xPC Target). Comparative results are presented in figures and tables in the thesis.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback