BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Multi-Class Classification Problem"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Risk-averse multi-class support vector machines
    (2018-12) Karagöz, Ayşenur
    A classification problem aims to identify the class of new observations based on the previous observations whose classes are known. It has many applications in a variety of disciplines such as medicine, finance and artificial intelligence. However, presence of outliers and noise in previous observations may have significant impact on the classification performance. Support vector machine (SVM) is a classifier introduced to solve binary classification problems under the presence of noise and outliers. In the literature, risk-averse SVM is shown to be more stable to noise and outliers compared to the original SVM formulations. However, we often observe more than two classes in real-life datasets. In this study, we aim to develop riskaverse multi-class SVMs following the idea of risk-averse binary SVM. We use risk measures, VaR and CVaR, to implement risk-aversion to multi-class SVMs. Since VaR constraints are nonconvex in general, SVMs with VaR constraints are more complex than SVMs with CVaR. Therefore, we propose a strong big-M formulation to solve multi-class SVM problems with VaR constraints efficiently. We also provide a computational study on the classification performance of the original multi-class SVM formulations and the proposed risk-averse formulations using artificial and real-life datasets. The results show that multi-class SVMs with VaR are more stable to outliers and noise compared to multi-class SVMs with CVaR, and both of them are more stable than the original formulations.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback