Browsing by Subject "Motion processing"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Auditory modulation of spiking activity and local field potentials in area MT does not appear to underlie an audiovisual temporal illusion(American Physiological Society, 2018) Kafalıgönül, Hulusi; Albright, T. D.; Stoner, G. R.The timing of brief stationary sounds has been shown to alter the perceived speed of visual apparent motion (AM), presumably by altering the perceived timing of the individual frames of the AM stimuli and/or the duration of the interstimulus intervals (ISIs) between those frames. To investigate the neural correlates of this “temporal ventriloquism” illusion, we recorded spiking and local field potential (LFP) activity from the middle temporal area (area MT) in awake, fixating macaques. We found that the spiking activity of most MT neurons (but not the LFP) was tuned for the ISI/speed (these parameters covaried) of our AM stimuli but that auditory timing had no effect on that tuning. We next asked whether the predicted changes in perceived timing were reflected in the timing of neuronal responses to the individual frames of the AM stimuli. Although spiking dynamics were significantly, if weakly, affected by auditory timing in a minority of neurons, the timing of spike responses did not systematically mirror the predicted perception of stimuli. Conversely, the duration of LFP responses in β-and γ-frequency bands was qualitatively consistent with human perceptual reports. We discovered, however, that LFP responses to auditory stimuli presented alone were robust and that responses to audiovisual stimuli were predicted by the linear sum of responses to auditory and visual stimuli presented individually. In conclusion, we find evidence of auditory input into area MT but not of the nonlinear audiovisual interactions we had hypothesized to underlie the illusion. NEW & NOTEWORTHY We utilized a set of audiovisual stimuli that elicit an illusion demonstrating “temporal ventriloquism” in visual motion and that have spatiotemporal intervals for which neurons within the middle temporal area are selective. We found evidence of auditory input into the middle temporal area but not of the nonlinear audiovisual interactions underlying this illusion. Our findings suggest that either the illusion was absent in our nonhuman primate subjects or the neuronal correlates of this illusion lie within other areas.Item Open Access Auditory modulation of visual apparent motion with short spatial and temporal intervals(Association for Research in Vision and Ophthalmology, 2010) Kafalıgönül, Hulusi; Stoner, G.Recently, E. Freeman and J. Driver (2008) reported a cross-modal temporal interaction in which brief sounds drive the perceived direction of visual apparent-motion, an effect they attributed to “temporal capture” of the visual stimuli by the sounds (S. Morein-Zamir, S. Soto-Faraco, & A. Kingstone, 2003). Freeman and Driver used “long-range” visual motion stimuli, which travel over long spatial and temporal intervals and engage high-order cortical areas (K. G. Claeys, D. T. Lindsey, E. De Schutter, & G. A. Orban, 2003; Y. Zhuo et al., 2003). We asked whether Freeman and Driver’s temporal effects extended to the short-range apparent-motion stimuli that engage cortical area MT, a lower-order area with well-established spatiotemporal selectivity for visual motion (e.g. A. Mikami, 1991, 1992; A. Mikami, W. T. Newsome, & R. H. Wurtz, 1986a, 1986b; W. T. Newsome, A. Mikami, & R. H. Wurtz, 1986). Consistent with a temporal-capture account, we found that static sounds bias the perception of both the direction (Experiment 1) and the speed (Experiment 2) of short-range motion. Our results suggest that auditory timing may interact with visual spatiotemporal processing as early as cortical area MT. Examination of the neuronal responses of this well-studied area to the stimuli used in this study would provide a test and might provide insight into the neuronal representation of time.