Browsing by Subject "Motifs"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Analytic relationship of relative synchronizability to network structure and motifs(National Academy of Sciences, 2023-09-05) Lizier, J. T.; Bauer, F.; Atay, Fatihcan Mehmet; Jost, J.Synchronization phenomena on networks have attracted much attention in studies of neural, social, economic, and biological systems, yet we still lack a systematic understanding of how relative synchronizability relates to underlying network structure. Indeed, this question is of central importance to the key theme of how dynamics on networks relate to their structure more generally. We present an analytic technique to directly measure the relative synchronizability of noise-driven time-series processes on networks, in terms of the directed network structure. We consider both discrete-time autoregressive processes and continuous-time Ornstein–Uhlenbeck dynamics on networks, which can represent linearizations of nonlinear systems. Our technique builds on computation of the network covariance matrix in the space orthogonal to the synchronized state, enabling it to be more general than previous work in not requiring either symmetric (undirected) or diagonalizable connectivity matrices and allowing arbitrary self-link weights. More importantly, our approach quantifies the relative synchronization specifically in terms of the contribution of process motif (walk) structures. We demonstrate that in general the relative abundance of process motifs with convergent directed walks (including feedback and feedforward loops) hinders synchronizability. We also reveal subtle differences between the motifs involved for discrete or continuous-time dynamics. Our insights analytically explain several known general results regarding synchronizability of networks, including that small-world and regular networks are less synchronizable than random networks.Item Open Access Deriving pairwise transfer entropy from network structure and motifs(Royal Society Publishing, 2020) Novelli, L.; Atay, Fatihcan M.; Jost, J.; Lizier, J. T.Transfer entropy (TE) is an established method for quantifying directed statistical dependencies in neuroimaging and complex systems datasets. The pairwise (or bivariate) TE from a source to a target node in a network does not depend solely on the local source-target link weight, but on the wider network structure that the link is embedded in. This relationship is studied using a discrete-time linearly coupled Gaussian model, which allows us to derive the TE for each link from the network topology. It is shown analytically that the dependence on the directed link weight is only a first approximation, valid for weak coupling. More generally, the TE increases with the in-degree of the source and decreases with the in-degree of the target, indicating an asymmetry of information transfer between hubs and low-degree nodes. In addition, the TE is directly proportional to weighted motif counts involving common parents or multiple walks from the source to the target, which are more abundant in networks with a high clustering coefficient than in random networks. Our findings also apply to Granger causality, which is equivalent to TE for Gaussian variables. Moreover, similar empirical results on random Boolean networks suggest that the dependence of the TE on the in-degree extends to nonlinear dynamics.