Browsing by Subject "Momentum relaxation"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Drag effect in double-layer dipolar fermi gases(IOP, 2014) Tanatar, Bilal; Renklioğlu, Başak; Öktel, M. ÖzgürWe consider two parallel layers of two-dimensional spin-polarized dipolar Fermi gas without any tunneling between the layers. The effective interactions describing screening and correlation effects between the dipoles in a single layer (intra-layer) and across the layers (interlayer) are modeled within the Hubbard approximation. We calculate the rate of momentum transfer between the layers when the gas in one layer has a steady flow. The momentum transfer induces a steady flow in the second layer which is assumed initially at rest. This is the drag effect familiar from double-layer semiconductor and graphene structures. Our calculations show that the momentum relaxation time has temperature dependence similar to that in layers with charged particles which we think is related to the contributions from the collective modes of the system.