Browsing by Subject "Modulation bandwidth"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Broadband THz modulators based on multilayer graphene on PVC(IEEE, 2016) Kaya, E.; Kakenov, Nurbek; Kocabaş, Coşkun; Altan, H.; Esentürk, O.In this study we present the direct terahertz time-domain spectroscopic measurement of CVD-grown multilayer graphene (MLG) on PVC substrate with an electrically tunable Fermi level. In a configuration consisting MLG and injected organic dopant, the transmitted intensity loss of terahertz radiation was observed with an applied voltage between 0 and 3.5 V. We showed that MLG on PVC devices provided approximately 100 % modulation between 0.2 and 1.5 THz at preferentially low operation voltage of ca. 3V. The observed modulation bandwidth in terahertz frequencies appears to be instrument limited.Item Open Access Range resolution improvement in passive coherent location radar systems using multiple FM radio channels(IET, 2006) Taşdelen, Akif Sinan; Köymen, HayrettinPassive coherent location (PCL) radar systems that use single FM radio channel signal as illuminator of opportunity have limited range resolution due to low modulation bandwidth and high dependence on the content that is being broadcasted from the FM station. An improvement in range resolution is obtained by using multiple adjacent FM channels, emitted from co-sited transmitters, which is often the case in large towns in countries, where the FM channel allocations are relatively weakly regulated. The proposed scheme computes the autocorrelation function of the signal directly received from the FM co-located transmitter, and compares it to the cross-ambiguity function, obtained from direct and target scattered signals. The geometry of the problem is like in the case of monostatic radar. The range information is obtained by the delay between the cross-ambiguity function and the autocorrelation function. It is shown that down to -37dB signal to noise ratio (SNR) the autocorrelation function of 7 FM channels with different contents can be successfully extracted from the cross-ambiguity function. The detection of the time delays is a linear estimation problem. The issue of time-delay estimation is a known topic of research. A powerful estimator can be found.Item Open Access Range resolution improvement in passive coherent location radar systems using multiple FM radio channels(2007) Taşdelen, Akif SinanPassive coherent location (PCL) radar systems that use single FM radio channel signal as illuminator of opportunity have reasonable Doppler resolution, but suffer from limited range resolution due to low modulation bandwidth and high dependence on the content that is being broadcasted from the FM station. An improvement in range resolution is obtained by using multiple adjacent FM channels, emitted from co-sited transmitters, which is often the case in large towns. The proposed scheme computes the autocorrelation function of the signal directly received from the co-located FM transmitter, and compares it to the cross-ambiguity function, obtained from direct and target scattered signals. The geometry of the problem is like in the case of monostatic radar. The range information is obtained by the delay between the cross-ambiguity function and the autocorrelation function. When a single FM channel that has a modulation bandwidth of 25 kHz is employed the range resolution is 6 km. It is shown that down to −33dB signal to noise ratio (SNR), which corresponds to a distance of 110 km from the receiver, targets that are 3 km separated from each other can be detected with 3 adjacent FM channels. It is possible to detect targets that are 100 m separated from each other with 7 FM channels. The detection of the time delays is a linear estimation problem.