Browsing by Subject "Modes of operation"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Effects of linear filter on stability and performance of human-in-the-loop model reference adaptive control architectures(ASME, 2017) Yousefi, Ehsan; Demir, Didem Fatma; Sipahi, R.; Yücelen, T.; Yıldız, YıldırayModel reference adaptive control (MRAC) can effectively handle various challenges of the real world control problems including exogenous disturbances, system uncertainties, and degraded modes of operations. In human-in-the-loop settings, MRAC may cause unstable system trajectories. Basing on our recent work on the stability of MRAC-human dynamics, here we follow an optimization based computations to design a linear filter and study whether or not this filter inserted between the human model and MRAC could help remove such instabilities, and potentially improve performance. To this end, we present a mathematical approach to study how the error dynamics of MRAC could favorably or detrimentally influence human operator's error dynamics in performing a certain task. An illustrative numerical example concludes the study.Item Open Access Fluence of thulium laser system in skin ablation(IEEE, 2010) Bilici, T.; Tabakoğlu, O.; Kalaycıoğlu, Hamit; Kurt, A.; Sennaroglu, A.; Gülsoy, M.Tm:YAP laser system at power levels up to 1.2 W at 1980 nm was established in both continuous-wave and modulated modes of operation. The fluence effect of the laser system for skin ablation was analyzed by histology analysis with Wistar rat skin tissues. Thermally altered length, thermally altered area, ablation area, and ablation depth parameters were measured on histology images of skin samples just after the laser operation and after four-day healing period. Continuous-wave mode of operation provided higher thermal effects on the skin samples. Lower fluence levels were found for efficient ablation effect. © 2010 IEEE.Item Open Access A versatile plug microvalve for microfluidic applications(Elsevier, 2017-10) Guler, M. T.; Beyazkilic, P.; Elbuken, C.Most of the available microvalves include complicated fabrication steps and multiple materials. We present a microvalve which is inspired from macroplug valves. The plug microvalve is fabricated by boring a hole through a rigid cylindrical rod and inserting it through a microfluidic chip. It simply functions by rotating the rod which aligns or misaligns the valve port with the microchannel. The rod is made up of a rigid material for applying the valve to an elastic polydimethylsiloxane (PDMS) microchannel. The valve can also be used for a rigid channel by inserting the rod into an elastic tubing. Therefore, the presented microvalve can be used for both elastomeric and thermoplastic channels. The plug microvalve can be applied to a prefabricated microchannel and does not require modification of the mold design. We have verified the repeatability and robustness of the valve by repetitive operation cycles using a servo motor. The plug microvalve is adaptable to numerous microfluidic applications. We have shown three modes of operation for the microvalve including fluid flow control across multiple intersecting channels. Integrating the microvalve to some commonly used microfluidic designs, we demonstrated the versatility and the practicality of the microvalve for controlling flow focusing, microdroplet sorting and rapid chemical agent detection. This low-cost microvalve significantly minimizes the prototyping time for microfluidic systems.