Browsing by Subject "Model-Driven Software Development"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Architecture framework for mapping parallel algorithms to parallel computing platforms(CEUR-WS, 2013) Tekinerdogan, Bedir; Arkin, E.Mapping parallel algorithms to parallel computing platforms requires several activities such as the analysis of the parallel algorithm, the definition of the logical configuration of the platform, and the mapping of the algorithm to the logical configuration platform. Unfortunately, in current parallel computing approaches there does not seem to be precise modeling approaches for supporting the mapping process. The lack of a clear and precise modeling approach for parallel computing impedes the communication and analysis of the decisions for supporting the mapping of parallel algorithms to parallel computing platforms. In this paper we present an architecture framework for modeling the various views that are related to the mapping process. An architectural framework organizes and structures the proposed architectural viewpoints. We propose five coherent set of viewpoints for supporting the mapping of parallel algorithms to parallel computing platforms. We illustrate the architecture framework for the mapping of array increment algorithm to the parallel computing platform. Copyright © 2013 for the individual papers by the papers' authors.Item Open Access Model-driven approach for supporting the mapping of parallel algorithms to parallel computing platforms(Springer, Berlin, Heidelberg, 2013) Arkin, E.; Tekinerdogan, Bedir; Imre, K.M.The trend from single processor to parallel computer architectures has increased the importance of parallel computing. To support parallel computing it is important to map parallel algorithms to a computing platform that consists of multiple parallel processing nodes. In general different alternative mappings can be defined that perform differently with respect to the quality requirements for power consumption, efficiency and memory usage. The mapping process can be carried out manually for platforms with a limited number of processing nodes. However, for exascale computing in which hundreds of thousands of processing nodes are applied, the mapping process soon becomes intractable. To assist the parallel computing engineer we provide a model-driven approach to analyze, model, and select feasible mappings. We describe the developed toolset that implements the corresponding approach together with the required metamodels and model transformations. We illustrate our approach for the well-known complete exchange algorithm in parallel computing. © 2013 Springer-Verlag.Item Open Access Model-driven transformations for mapping parallel algorithms on parallel computing platforms(MDHPCL, 2013) Arkin, E.; Tekinerdoğan, BedirOne of the important problems in parallel computing is the mapping of the parallel algorithm to the parallel computing platform. Hereby, for each parallel node the corresponding code for the parallel nodes must be implemented. For platforms with a limited number of processing nodes this can be done manually. However, in case the parallel computing platform consists of hundreds of thousands of processing nodes then the manual coding of the parallel algorithms becomes intractable and error-prone. Moreover, a change of the parallel computing platform requires considerable effort and time of coding. In this paper we present a model-driven approach for generating the code of selected parallel algorithms to be mapped on parallel computing platforms. We describe the required platform independent metamodel, and the model-to-model and the model-to-text transformation patterns. We illustrate our approach for the parallel matrix multiplication algorithm. Copyright © 2013 for the individual papers by the papers' authors.Item Open Access MoDSEL: model-driven software evolution language(IGI Global, 2013) Er, E.; Tekinerdogan, B.Model-Driven Software Development (MDSD) aims to support the development and evolution of software intensive systems using the basic concepts of model, metamodel, and model transformation. In parallel with the ongoing academic research, MDSD is more and more applied in industrial practices. Like conventional non-MDSD practices, MDSD systems are also subject to changing requirements and have to cope with evolution. In this chapter, the authors provide a scenario-based approach for documenting and analyzing the impact of changes that apply to model-driven development systems. To model the composition and evolution of an MDSD system, they developed the so-called Model-Driven Software Evolution Language (MoDSEL) which is based on a megamodel for MDSD. MoDSEL includes explicit language abstractions to specify both the model elements of an MDSD system and the evolution scenarios that might apply to model elements. Based on MoDSEL specifications, an impact analysis is performed to assess the impact of evolution scenarios and the sensitivity of model elements. A case study is provided to show different kind of evolution scenarios and the required adaptations to model elements. © 2014, IGI Global.