Browsing by Subject "Minimum distance"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Polarization-adjusted convolutional (PAC) codes as a concatenation of inner cyclic and outer polar- and Reed-Muller-like codes(Academic Press, 2023-10-23) Moradi, MohsenPolarization-adjusted convolutional (PAC) codes are a new family of linear block codes that can perform close to the theoretical bounds in the short block-length regime. These codes combine polar coding and convolutional coding. In this study, we show that PAC codes are equivalent to a new class of codes consisting of inner cyclic codes and outer polar- and Reed-Muller-like codes. We leverage the properties of cyclic codes to establish that PAC codes outperform polar- and Reed-Muller-like codes in terms of minimum distance.Item Open Access Short length trellis-based codes for gaussian multiple-access channels(Institute of Electrical and Electronics Engineers Inc., 2014) Ozcelikkale, A.; Duman, T. M.We focus on trellis-based joint code design for two-user Gaussian multiple-access channel (MAC) in the short block length regime. We propose a design methodology, provide specific code designs and report numerical performance results. We compare the performance of the jointly designed codes with the performance of the codes designed for point-to-point (P2P) channels including optimum (in terms of minimum distance) convolutional codes. Our results show that the proposed codes achieve superior performance compared to these alternatives especially in the high signal-to-noise (SNR) regime in equal power scenarios.