Browsing by Subject "Milling machines"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Influence of tool wear on machining forces and tool deflections during micro milling(Springer, 2016) Oliaei, S. N. B.; Karpat, Y.Tool wear on the cutting edges of micro end mills is an important issue affecting process outputs such as tool deflections and surface roughness, especially when difficult-to-cut materials such as titanium alloys, stainless steel, etc. are machined at micro scale. An understanding of the interactions between tool wear, machining forces, tool deflections, and surface roughness is important in order to maintain component quality requirements. However, in literature, the number of studies concerning tool wear in micro end mills is limited. The goal of the paper is to better understand tool wear patterns (flank wear, edge rounding) of micro end mills and their relationship to machining parameters. In this study, first, the influence of tool wear on micro milling forces and surface roughness parameters is analyzed and favorable micro milling process parameters are identified. It is shown that, when machining with worn end mills, forces are affected by the tool wear patterns. Then, the influence of increased milling forces due to tool wear on tool deflections and tool breakage is studied using both experimental techniques and finite element analysis. The finite element model-based tool deflection and tool breakage predictions are validated through experiments. The results of this study can be used in process parameter selection in pocket micro milling operations and tool condition monitoring systems.Item Open Access On-machine fabrication of PCD and WC micro end mills using micro electro discharge machining(Inderscience Enterprises Ltd., 2014) Oliaei, S.N.B.; Özdemir, C.; Karpat, Y.Micro electro discharge machining (μ -EDM) process can be used to fabricate micro-milling tools of different geometries from tungsten carbide (WC) and polycrystalline diamond (PCD). The non-contact nature of EDM process makes micro tool fabrication a challenging task while offering the advantage of eliminating tool run out and clamping errors since micro tools fabricated on-machine. The tools are fabricated and used on the same spindle. In this study, a combination of block-EDM and wire electro discharge grinding (WEDG) techniques are used to fabricate micro end mills of different geometries. The influences of EDM process parameters on material erosion rate and surface roughness are examined. The performance of the fabricated micro-tools in ductile mode machining of fused silica has been investigated. It is found that micro end mills can be used to fabricate prototypes of microfluidics chips with acceptable quality. © 2014 Inderscience Enterprises Ltd.