Browsing by Subject "Microwave resonators"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access Classification of dielectric microparticles by microwave impedance cytometry(Cold Spring Harbor Laboratory, 2022-09-28) Hanay, M. Selim; Sarı, Burak; Tefek, UzayAbstractCoulter counters and impedance cytometry are commonly used for counting microscopic objects, such as cells and microparticles flowing in a liquid, as well as to obtain their size distribution. However, the ability of these techniques to provide simultaneous material information — via dielectric permittivity measurements — has been limited so far. The challenge stems from the fact that the signals generated by microparticles of identical size, but different material composition, are close to each other. The similarity in impedance signals arises because the material-dependent factor is determined mainly by the volume of aqueous solution displaced by the microparticles, rather than the microparticles themselves. To differentiate between materially distinct particles with similar geometry and size, another measurement mode needs to be implemented. Here, we describe a new microfluidics-based sensor that provides material classification between microparticles with similar sizes by integrating impedance cytometry with microwave resonator sensors on the same chip. While low-frequency impedance cytometry provides the geometric size of particles, the microwave sensor operating at three orders-of-magnitude higher frequency provides their electrical size. By combining these two measurements, the Clausius-Mossotti factors of microparticles can be calculated to serve as a differentiation parameter. In addition to distinguishing dielectric materials from cells and metals, we classified two different dielectric microparticles with similar sizes and electrical characteristics: polystyrene and soda lime glass, with 94% identification accuracy. The proposed technique can serve as an automated monitoring system for quality control of manufactured microparticles and facilitate environmental microplastic screening.Item Open Access High resolution dielectric characterization of single cells and microparticles using integrated microfluidic microwave sensors(Institute of Electrical and Electronics Engineers, 2023-03-01) Seçme, Arda; Tefek, Uzay; Sarı, Burak; Pisheh, Hadi Sedaghat; Uslu, H. Dilara; Akbulut, Özge; Küçükoğlu, Berk; Erdogan, R. Tufan; Alhmoud, Hashim; Şahin, Özgür; Hanay, M. SelimMicrowave sensors can probe intrinsic material properties of analytes in a microfluidic channel at physiologically relevant ion concentrations. While microwave sensors have been used to detect single cells and microparticles in earlier studies, the synergistic use and comparative analysis of microwave sensors with optical microscopy for material classification and size tracking applications have been scarcely investigated so far. Here we combined microwave and optical sensing to differentiate microscale objects based on their dielectric properties. We designed and fabricated two types of planar sensor: a Coplanar Waveguide Resonator (CPW) and a Split-Ring Resonator (SRR). Both sensors possessed sensing electrodes with a narrow gap to detect single cells passing through a microfluidic channel integrated on the same chip. We also show that standalone microwave sensors can track the relative changes in cellular size in real-time. In sensing single 20-micron diameter polystyrene particles, Signal-to-Noise ratio values of approximately 100 for CPW and 70 for SRR sensors were obtained. These findings demonstrate that microwave sensing technology can serve as a complementary technique for single-cell biophysical experiments and microscale pollutant screening.Item Open Access Light-controlled microwave whispering-gallery-mode quasi-optical resonators at 50W LED array illumination(American Institute of Physics Inc., 2015) Yurchenko V.B.; Ciydem, M.; Altintas, A.We present experimental observations of light-controlled resonance effects in microwave whispering-gallery-mode quasi-optical dielectric-semiconductor disk resonators in the frequency band of 5 GHz to 20 GHz arising due to illumination from a light emitting diode (LED) of 50W power range. We obtain huge enhancement of photo-sensitivity (growing with the resonator Q-factor) that makes light-microwave interaction observable with an ordinary light (no laser) at conventional brightness (like an office lighting) in quasi-optical microwave structures at rather long (centimeter-scale) wavelength. We also demonstrate non-conventional photo-response of Fano resonances when the light suppresses one group of resonances and enhances another group. The effects could be used for the optical control and quasi-optical switching of microwave propagation through either one or another frequency channel. © 2015 Author(s).Item Open Access Microfluidics-integrated microwave sensors for single cells size discrimination(Institute of Electrical and Electronics Engineers, 2021-04-01) Seçme, Arda; Pisheh, Hadi Sedaghat; Uslu, H. Dilara; Akbulut, Özge; Erdoğan, R. Tufan; Hanay, M. SelimThe size of a cell is one of the most fundamental biophysical parameters it possesses. Traditionally size measurements are done by using optical microscopy and quantitative phase imaging. However, a sensor with higher resolution, high throughput and lower cost is still needed. Here, a novel microfluidics-integrated microwave sensor is demonstrated to characterize single cells in real-time without labelling. Coplanar waveguide resonator is designed with a bowtie-shaped sensing electrodes separated by 50 μm. Cells are transported to sensing region by microfluidic channels and their sizes are measured simultaneously by the microwave sensors and optical microscopy. To enhance the microwave resolution, the microwave resonator is equipped with external heterodyne measurement circuitry detecting each and every cell passing through the sensing region. By comparing quantitative microscopic image analysis with frequency shifts, we show that microwave sensors can effectively measure cellular size. Our results indicate that microfluidics-integrated microwave sensors (MIMS) can be used for detecting.Item Embargo Microwave resonant sensor integration with impedance cytometry in microfluidic platform for probing micro-scale dielectric permittivity(2023-09) Tefek, UzayThis thesis presents a novel multiphysical sensor that integrates low-frequency impedance cytometry with high-frequency microwave capacitance sensing. The characterization of microscale objects, including microparticles and cells, is essential in various scientific disciplines, such as biology, materials science, and environmental science. Accurate identification and classification of these microscale entities are critical for applications ranging from drug delivery optimization to environmental impact assessment, however, the current techniques fall short in terms of the rapidity and cost-effectiveness necessary for analyzing extensive populations. To address this challenge, our hybrid sensor combines low-frequency impedance cytometry and high-frequency microwave capacitance sensing for material characterization based on dielectric permittivity. This integration offers a rapid, cost-effective, and highly accurate method for identifying and characterizing microscale particles and cells. Experimental studies demonstrate the sensor’s efficacy, achieving remarkable signal-to-noise ratios. The sensor’s versatility ex-tends monitoring permittivity changes in single cells exposed to fixing agents offering valuable insights into cellular properties. In summary, this thesis introduces an innovative multiphysical sensor that advances microscale entity analysis, enabling rapid and precise identification and characterization.Item Open Access Permittivity-based microparticle classification by the integration of impedance cytometry and microwave resonators(John Wiley and Sons Inc, 2023-11-16) Tefek, Uzay; Sari, B.; Alhmoud, Hashim Ziad; Hanay, Mehmet SelimPermittivity of microscopic particles can be used as a classification parameter for applications in materials and environmental sciences. However, directly measuring the permittivity of individual microparticles has proven to be challenging due to the convoluting effect of particle size on capacitive signals. To overcome this challenge, a sensing platform is built to independently obtain both the geometric and electric size of a particle, by combining impedance cytometry and microwave resonant sensing in a microfluidic chip. This way the microwave signal, which contains both permittivity and size effects, can be normalized by the size information provided by impedance cytometry to yield an intensive parameter that depends only on permittivity. The technique allows to differentiate between polystyrene and soda lime glass microparticles—below 22 µm in diameter—with more than 94% accuracy, despite their similar sizes and electrical characteristics. Furthermore, it is shown that the same technique can be used to differentiate between normal healthy cells and fixed cells of the same geometric size. The technique offers a potential route for targeted applications such as environmental monitoring of microplastic pollution or quality control in pharmaceutical industry.Item Open Access Single and coupled metasurfaces for tunable polarization-sensitive terahertz filters(IEEE, 2016) Serebryannikov A.E.; Lakhtakia A.; Özbay, EkmelWe simulated the transmission of terahertz waves through a single metasurface and two coupled metasurfaces that comprise H-shaped subwavelength resonators made of InAs, a magnetically tunable material. The magnetostatic field was varied from 0 to 1 T. The obtained results demonstrate that the substrate permittivity and the coupling of metasurfaces can significantly affect filtering performance as well as the possibility of tuning for different orientations of the magnetostatic field. � 2016 IEEE.