Browsing by Subject "Microhardness"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Effect of milling time on the structure, micro-hardness, and thermal behavior of amorphous/nanocrystalline TiNiCu shape memory alloys developed by mechanical alloying(Elsevier Ltd, 2014) Alijani F.; Amini, R.; Ghaffari, M.; Alizadeh, M.; Okyay, Ali KemalIn the present paper, the effect of milling process on the chemical composition, structure, microhardness, and thermal behavior of Ti-41Ni-9Cu compounds developed by mechanical alloying was evaluated. The structural characteristic of the alloyed powders was evaluated by X-ray diffraction (XRD). The chemical composition homogeneity and the powder morphology and size were studied by scanning electron microscopy coupled with electron dispersive X-ray spectroscopy. Moreover, the Vickers micro-indentation hardness of the powders milled for different milling times was determined. Finally, the thermal behavior of the as-milled powders was studied by differential scanning calorimetery. According to the results, at the initial stages of milling (typically 0-12. h), the structure consisted of a Ni solid solution and amorphous phase, and by the milling evolution, nanocrystalline martensite (B19') and austenite (B2) phases were initially formed from the initial materials and then from the amorphous phase. It was found that by the milling development, the composition uniformity is increased, the inter-layer thickness is reduced, and the powders microhardness is initially increased, then reduced, and afterward re-increased. It was also realized that the thermal behavior of the alloyed powders and the structure of heat treated samples is considerably affected by the milling time.Item Open Access Properties of high specific strength Al-4wt.% Al2O3/B4C nano-composite produced by accumulative roll bonding process(Elsevier Ltd, 2013) Alizadeh, M.; beni H.A.; Ghaffari, M.; Amini, R.The influence of nano-scale reinforcement on the mechanical and microstructural properties of ultrafine-grained composites was studied. Al matrix (pure aluminum) composites, with a grain size of 230nm and B4C and Al2O3 reinforcements with an average size of 50nm, were fabricated via the accumulative roll bonding (ARB) process. To evaluate structure and microstructure of the produced composites, X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM) were applied. Mechanical properties of the specimens were investigated by tensile and hardness tests. The result revealed that in comparison with monolithic Al (ARBed Al without ceramic particles), the presence of nano-particles enhances specific strength of composites. Also, the results showed that with increasing ARB cycles, the microhardness of the composites increases. In addition, the specific strength and microhardness of the composite samples are higher than those of the monolithic Al. The density of the composite samples and monolithic Al was measured by the Archimedes method showing that the density decreases in presence of ceramic particles. © 2013 Elsevier Ltd.