Browsing by Subject "Metal ion concentrations"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Lyotropic liquid-crystalline mesophases of [Zn(H2O)6](NO3)2-C12EO10-CTAB-H2O and [Zn(H2O)6](NO3)2-C12EO10-SDS-H2O systems(2008) Albayrak, C.; Soylu, A. M.; Dag, Ö.The mixture of two surfactants (C12EO10-CTAB and C 12EO10-SDS) forms lyotropic liquid-crystalline (LLC) mesophases with [Zn(H2O)6](NO3)2 in the presence of a minimum concentration of 1.75 H2O per C 12EO10. The metal ion/C12EO10 mole ratio can be increased up to 8.0, which is a record high metal ion density in an LLC mesophase. The metal ion concentration can be increased in the medium by increasing the CTAB/C12EO10 or SDS/C12EO 10 mole ratio at the expense of the stability of the LLC mesophase. The structure and some thermal properties of the new mesophase have been investigated using XRD, POM, FTIR, and Raman techniques. © 2008 American Chemical Society.Item Open Access Novel molecular building blocks based on the boradiazaindacene chromophore: applications in fluorescent metallosupramolecular coordination polymers(2009) Bozdemir, Ö. A.; Büyükcakir, O.; Akkaya, E. U.We designed and synthesized novel boradiazaindacene (Bodipy) derivatives that are appropriately functionalized for metal-ion-mediated supramolecular polymerization. Thus, ligands for 2-terpyridyl-, 2,6-terpyridyl-, and bipyridyl-functionalized Bodipy dyes were synthesized through Sonogashira couplings. These fluorescent building blocks are responsive to metal ions in a stoichiometry-dependent manner. Octahedral coordinating metal ions such as Zn II result in polymerization at a stoichiometry corresponding to two terpyridyl ligands to one Zn II ion. However, at increased metal ion concentrations, the dynamic equilibria are re-established in such a way that the monomeric metal complex dominates. The position of equilibria can easily be monitored by 1H NMR and fluorescence spectroscopies. As expected, although open-shell Fe II ions form similar complex structures, these cations quench the fluorescence emission of all four functionalized Bodipy ligands. © 2009 Wiley-VCH Verlag GmbH & Co. KGaA.