Browsing by Subject "Metal insulator metals"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access Large area compatible broadband superabsorber surfaces in the VIS-NIR spectrum utilizing metal-insulator-metal stack and plasmonic nanoparticles(OSA - The Optical Society, 2016) Dereshgi, S. A.; Okyay, Ali KemalPlasmonically enhanced absorbing structures have been emerging as strong candidates for photovoltaic (PV) devices. We investigate metal-insulator-metal (MIM) structures that are suitable for tuning spectral absorption properties by modifying layer thicknesses. We have utilized gold and silver nanoparticles to form the top metal (M) region, obtained by dewetting process compatible with large area processes. For the middle (I) and bottom (M) layers, different dielectric materials and metals are investigated. Optimum MIM designs are discussed. We experimentally demonstrate less than 10 percent reflection for most of the visible (VIS) and near infrared (NIR) spectrum. In such stacks, computational analysis shows that the bottom metal is responsible for large portion of absorption with a peak of 80 percent at 1000 nm wavelength for chromium case.Item Open Access Multispectral plasmonic structures using native aluminum oxide and aluminum(OSA, 2017) Ayaş, Sencer; Bakan, Gökan; Dana, AykutluWe report the use of native aluminum oxide to fabricate periodic metal-insulator-metal resonators with simultaneous resonances in the visible and IR wavelengths. The cavity size is in the order of λ3/25000 in the NIR.Item Open Access Perfectly absorbing ultra thin interference coatings for hydrogen sensing(OSA - The Optical Society, 2016) Serhatlioglu, M.; Ayas S.; Bıyıklı, Necmi; Dana, A.; Solmaz, M. E.Here we numerically demonstrate a straightforward method for optical detection of hydrogen gas by means of absorption reduction and colorimetric indication. A perfectly absorbing metal-insulator-metal (MIM) thin film interference structure is constructed using a silver metal back reflector, silicon dioxide insulator, and palladium as the upper metal layer and hydrogen catalyst. The thickness of silicon dioxide allows the maximizing of the electric field intensity at the Air/SiO2 interface at the quarter wavelengths and enabling perfect absorption with the help of highly absorptive palladium thin film (∼7 nm). While the exposure of the MIM structure to H2 moderately increases reflection, the relative intensity contrast due to formation of metal hydride is extensive. By modifying the insulator film thickness and hence the spectral absorption, the color is tuned and eye-visible results are obtained.Item Open Access Plasmonically enhanced hot electron based photovoltaic device(Optical Society of American (OSA), 2013) Atar F.B.; Battal, E.; Aygun L.E.; Daglar, B.; Bayındır, Mehmet; Okyay, Ali KemalHot electron photovoltaics is emerging as a candidate for low cost and ultra thin solar cells. Plasmonic means can be utilized to significantly boost device efficiency. We separately form the tunneling metal-insulator-metal (MIM) junction for electron collection and the plasmon exciting MIM structure on top of each other, which provides high flexibility in plasmonic design and tunneling MIM design separately. We demonstrate close to one order of magnitude enhancement in the short circuit current at the resonance wavelengths. © 2013 Optical Society of America.Item Open Access Semiconductor-less photovoltaic device(IEEE, 2013) Atar, Fatih B.; Battal, Enes; Aygun, Levent E.; Dağlar, Bihter; Bayındır, Mehmet; Okyay, Ali KemalWe demonstrate a novel semiconductor-less photovoltaic device and investigate the plasmonic effects on this device structure. The device is made of metal and dielectric layers and the operation is based on hot carrier collection. We present the use of surface plasmons to improve energy conversion efficiency. The field localization provided by surface plasmons confine the incident light in the metal layer, increasing the optical absorption and hot electron generation rate inside the metal layer. The device consists of two tandem MIM (metal-insulator-metal) junctions. Bottom MIM junction acts as a rectifying diode and top MIM junction is used to excite surface plasmons. The device operation principle as well as the topology will be discussed in detail. © 2013 IEEE.Item Open Access Sensitivity comparison of localized plasmon resonance structures and prism coupler(2014) Kaya, Y.; Ayas S.; Topal, A. E.; Guner, H.; Dana, A.Plasmon resonances are widely used in biomolecular sensing and continue to be an active research field due to the rich variety of surface and measurement configurations, some of which exhibit down to single molecule level sensitivity. The resonance wavelength shift of the plasmonic structure upon binding of molecules, strongly depends, among other parameters, on how well the field of the resonant mode is confined to the binding site. Here it is shown that, by using properly designed metal-insulator-metal type resonators, improved wavelength response can be achieved with localized surface plasmon resonators (LSPRs) compared to that of the commonly used Kretschmann geometry. Using computational tools we investigate theoretically the refractive index response of several LSPR structures to a 2 nm thin film of binding molecules. LSPR resonators are shown to feature improved sensitivity over conventional Kretschmann geometry in the wavelength interrogation scheme for such a thin film. Moreover, some of the LSPR modes are quasi-omnidirectional and such angular independence (up to 30 angle of incidence) allows higher numerical apertures to be used in colorimetric imaging. Results highlight the potential of LSPRs for biomolecular sensing with high sensitivity and high spatial resolution.Publication Open Access Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity(OSA - The Optical Society, 2017) Ghobadi, Amir; Hajian, Hodjat; Gökbayrak, Murat; Dereshgi, Sina Abedini; Toprak, Ahmet; Butun, Bayram; Özbay, EkmelIn this work, we propose an optimum unit cell arrangement to obtain near absolute polarization insensitivity in a metal-insulator-metal (MIM) based ultra-broadband perfect absorber. Our findings prove that upon utilizing this optimum arrangement, the response of the absorber is retained and unchanged over all arbitrary incidence light polarizations, regardless of the shape of the top metal patch. First, the impact of the geometry of the top nanopatch resonators on the absorption bandwidth of the overall structure is explored. Then, the response of the MIM design for different incidence polarizations and angles is scrutinized. Finally, the proposed design is fabricated and characterized. © 2017 Optical Society of America.