Browsing by Subject "Mesostructured silica"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Cyclodextrin-functionalized mesostructured silica nanoparticles for removal of polycyclic aromatic hydrocarbons(Academic Press Inc., 2017) Topuz, F.; Uyar, T.Polycyclic aromatic hydrocarbons (PAHs) are the byproducts of the incomplete combustion of carbon-based fuels, and have high affinity towards DNA strands, ultimately exerting their carcinogenic effects. They are ubiquitous environmental contaminants, and can accumulate on tissues due to their lipophilic nature. In this article, we describe a novel concept for PAH removal from aqueous solutions using cyclodextrin-functionalized mesostructured silica nanoparticles (CDMSNs) and pristine mesostructured silica nanoparticles (MSNs). The adsorption applications of MSNs are greatly restricted due to the absence of surface functional groups on such particles. In this regard, cyclodextrins can serve as ideal functional molecules with their toroidal, cone-type structure, capable of inclusion-complex formation with many hydrophobic molecules, including genotoxic PAHs. The CDMSNs were synthesized by the surfactant-templated, NaOH-catalyzed condensation reactions of tetraethyl orthosilicate (TEOS) in the presence of two different types of cyclodextrin (i.e. hydroxypropyl-β-cyclodextrin (HP-β-CD) and native β-cyclodextrin (β-CD)). The physical incorporation of CD moieties was supported by XPS, FT-IR, NMR, TGA and solid-state 13C NMR. The CDMSNs were treated with aqueous solutions of five different PAHs (e.g. pyrene, anthracene, phenanthrene, fluorene and fluoranthene). The functionalization of MSNs with cyclodextrin moieties significantly boosted the sorption capacity (q) of the MSNs up to ∼2-fold, and the q ranged between 0.3 and 1.65 mg per gram CDMSNs, of which the performance was comparable to that of the activated carbon.Item Open Access Solid-solution of Cd(formula)Zn(formula)S nanocrystals in the channels of mesostructured silica films(2006) Akdoğan, YaşarMesostructured silica can be used as a reaction medium to produce solidsolution of Cd1-xZnxS nanocrystals as thin films. These films were synthesized from oligo(ethylene oxide) non-ionic surfactant (CH3(CH2)11(OCH2CH2)10OH, (C12EO10)), cadmium and zinc nitrate salts ([Cd(H2O)4](NO3)2 and [Zn(H2O)6](NO3)2), water, and tetramethylorthosilicate (TMOS, as silica source) mixtures using a liquid crystalline templating (LCT) approach and metal containing liquid crystalline (MLC) mesophase. Metal ion to surfactant mole ratio was 1.0 which determines the stability and structure of the mesostructured silica. The mesostructured silica film has a 3D hexagonal structure with oriented channels. The silica pore size can be controlled by controlling ageing temperature and time. The pore diameter of the silica channels that aged at room temperature (RT) for two days is 4.7 nm and the one aged at 2500 C for 30 minutes is 3.3 nm. Cd(II) and Zn(II) incorporated film samples can be reacted at RT under H2S atmosphere to produce zinc blend, Cd1-xZnxS nanocrystals (nano-Cd1-xZnxS-meso-SiO2) in the channels of the mesostructured silica. The band gaps of the nano-Cd1- xZnxS-meso-SiO2 vary between 2.6 eV for CdS and 4.1 eV for ZnS. The Cd (II) rich nanoparticles are larger (4.4 nm) than Zn (II) rich nanoparticles (3.1 nm). The silica wall thickness that can be controlled by ageing at different temperatures confines the growth of the Cd1-xZnxS nanocrystals in the pores. By controlling the size of the silica channel between 4.7 and 3.3 nm, one can control the band-gap of the CdS nanocrystals between 2.6 and 2.8 eV.Item Open Access Strong acid-nonionic surfactant lyotropic liquid-crystalline mesophases as media for the synthesis of carbon quantum dots and highly proton conducting mesostructured silica thin films and monoliths(American Chemical Society, 2015) Olutaş, E. B.; Balcı, F. M.; Dag, Ö.Lyotropic liquid-crystalline (LLC) materials are important in designing porous materials, and acids are as important in chemical synthesis. Combining these two important concepts will be highly beneficial to chemistry and material science. In this work, we show that a strong acid can be used as a solvent for the assembly of nonionic surfactants into various mesophases. Sulfuric acid (SA), 10-lauryl ether (C12E10), and a small amount of water form bicontinuous cubic (V1), 2Dhexagonal (H1), and micelle cubic (I1) mesophases with increasing SA/ C12E10 mole ratio. A mixture of SA and C12E10 is fluidic but transforms to a highly ordered LLC mesophase by absorbing ambient water. The LLC mesophase displays high proton conductivity (1.5 to 19.0 mS/cm at room temperature) that increases with an increasing SA content up to 11 SA/ C12E10 mole ratio, where the absorbed water is constant with respect to the SA amount but gradually increases from a 2.3 to 4.3 H2O/C12E10 mole ratio with increasing SA/C12E10 from 2 to 11, respectively. The mixture of SA and C12E10 slowly undergoes carbonization to produce carbon quantum dots (c-dots). The carbonization process can be controlled by simply controlling the water content of the media, and it can be almost halted by leaving the samples under ambient conditions, where the mixture slowly absorbs water to form photoluminescent c-dot-embedded mesophases. Over time the c-dots grow in size and increase in number, and the photoluminescence frequency gradually shifts to a lower frequency. The SA/C12E10 mesophase can also be used as a template to produce highly proton conducting mesostructured silica films and monoliths, as high as 19.3 mS/cm under ambient conditions. Aging the silica samples enhances the conductivity that can be even larger than for the LLC mesophase with the same amount of SA. The presence of silica has a positive effect on the proton conductivity of SA/C12E10 systems.Item Open Access Synthesis of solid solutions of Cd1-xZnxS nanocrystals in the channels of mesostructured silica films(Royal Society of Chemistry, 2006) Akdoğan, Y.; Üzüm, Ç.; Dag, O.; Coombs, N.In this contribution, we introduce the use of metal ion (Cd(ii) and Zn(ii)) modified mesostructured silica as a reaction medium, to produce a solid solution of Cd1-xZnxS nanocrystals as a thin film. With this approach, a true liquid crystalline templating (TLCT) and liquid crystalline mesophase of transition metal salt oligo(ethylene oxide) non-ionic surfactant (((1 - x)[Cd(H2O)4](NO3)2 + x[Zn(H2O)6](NO3)2) CH 3(CH2)11(OCH2CH2) 10OH, (MLC)), systems were collectively used to synthesise mesostructured silica films. The film samples were reacted at room temperature (RT) in an H2S atmosphere to produce zinc blend Cd 1-xZnxS nanocrystals in the channels of mesostructured silica. The initial Zn(ii) and Cd(ii) ion concentrations in the reaction media determine the final composition and band gap of the Cd1-xZn xS nanocrystals. The growth process of the Cd1-xZn xS nanocrystals in the pores is influenced by the silica walls. If the walls are rigid (well polymerized, obtained by aging the samples before H2S treatment), then the Cd1-xZnxS nanoparticles are smaller in size and more uniform in size distribution. © The Royal Society of Chemistry 2006.