Browsing by Subject "Mesh generation"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Exact and heuristic approaches based on noninterfering transmissions for joint gateway selection, time slot allocation, routing and power control for wireless mesh networks(Elsevier, 2017) Gokbayrak, K.; Yıldırım, E. A.Wireless mesh networks (WMNs) provide cost-effective alternatives for extending wireless communication over larger geographical areas. In this paper, given a WMN with its nodes and possible wireless links, we consider the problem of gateway node selection for connecting the network to the Internet along with operational problems such as routing, wireless transmission capacity allocation, and transmission power control for efficient use of wired and wireless resources. Under the assumption that each node of the WMN has a fixed traffic rate, our goal is to allocate capacities to the nodes in proportion to their traffic rates so as to maximize the minimum capacity-to-demand ratio, referred to as the service level. We adopt a time division multiple access (TDMA) scheme, in which a time frame on the same frequency channel is divided into several time slots and each node can transmit in one or more time slots. We propose two mixed integer linear programming formulations. The first formulation, which is based on individual transmissions in each time slot, is a straightforward extension of a previous formulation developed by the authors for a related problem under a different set of assumptions. The alternative formulation, on the other hand, is based on sets of noninterfering wireless transmissions. In contrast with the first formulation, the size of the alternative formulation is independent of the number of time slots in a frame. We identify simple necessary and sufficient conditions for simultaneous transmissions on different links of the network in the same time slot without any significant interference. Our characterization, as a byproduct, prescribes a power level for each of the transmitting nodes. Motivated by this characterization, we propose a simple scheme to enumerate all sets of noninterfering transmissions, which is used as an input for the alternative formulation. We also introduce a set of valid inequalities for both formulations. For large instances, we propose a three-stage heuristic approach. In the first stage, we solve a partial relaxation of our alternative optimization model and determine the gateway locations. This stage also provides an upper bound on the optimal service level. In the second stage, a routing tree is constructed for each gateway node computed in the first stage. Finally, in the third stage, the alternative optimization model is solved by fixing the resulting gateway locations and the routing trees from the previous two stages. For even larger networks, we propose a heuristic approach for solving the partial relaxation in the first stage using a neighborhood search on gateway locations. Our computational results demonstrate the promising performance of our exact and heuristic approaches and the valid inequalitiesItem Open Access Nonrectangular wavelets for multiresolution mesh analysis and compression(IEEE, 2006) Köse, Kıvanç; Çetin, A. Enis; Güdükbay, Uğur; Onural, LeventWe propose a new Set Partitioning In Hierarchical Trees (SPIHT) based mesh compression framework. The 3D mesh is first transformed to 2D images on a regular grid structure. Then, this image-like representation is wavelet transformed and SPIHT is applied on the wavelet domain data. The method is progressive because the resolution of the reconstructed mesh can be changed by varying the length of the one-dimensional data stream created by SPIHT algorithm. Nearly perfect reconstruction is possible if all of the data stream is received. © 2006 IEEE.Item Open Access Rate-distortion efficient piecewise planar 3-D scene representation from 2-D images(Institute of Electrical and Electronics Engineers, 2009-03) İmre, E.; Alatan, A. A.; Güdükbay, UğurIn any practical application of the 2-D-to-3-D conversion that involves storage and transmission, representation effi- ciency has an undisputable importance that is not reflected in the attention the topic received. In order to address this problem, a novel algorithm, which yields efficient 3-D representations in the rate distortion sense, is proposed. The algorithm utilizes two views of a scene to build a mesh-based representation incrementally, via adding new vertices, while minimizing a distortion measure. The experimental results indicate that, in scenes that can be approximated by planes, the proposed algorithm is superior to the dense depth map and, in some practical situations, to the block motion vector-based representations in the rate-distortion sense.