Browsing by Subject "Memoryless channels"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Generalized approximate message-passing decoder for universal sparse superposition codes(IEEE, 2017-06) Bıyık, Erdem; Barbier, J.; Dia, M.Sparse superposition (SS) codes were originally proposed as a capacity-achieving communication scheme over the additive white Gaussian noise channel (AWGNC) [1]. Very recently, it was discovered that these codes are universal, in the sense that they achieve capacity over any memoryless channel under generalized approximate message-passing (GAMP) decoding [2], although this decoder has never been stated for SS codes. In this contribution we introduce the GAMP decoder for SS codes, we confirm empirically the universality of this communication scheme through its study on various channels and we provide the main analysis tools: state evolution and the potential. We also compare the performance of GAMP with the Bayes-optimal MMSE decoder. We empirically illustrate that despite the presence of a phase transition preventing GAMP to reach the optimal performance, spatial coupling allows to boost the performance that eventually tends to capacity in a proper limit. We also prove that, in contrast with the AWGNC case, SS codes for binary input channels have a vanishing error floor in the limit of large codewords. Moreover, the performance of Hadamard-based encoders is assessed for practical implementations. © 2017 IEEE.Item Open Access Upper bounds on the capacity of deletion channels using channel fragmentation(Institute of Electrical and Electronics Engineers Inc., 2015) Rahmati, M.; Duman, T. M.We study memoryless channels with synchronization errors as defined by a stochastic channel matrix allowing for symbol drop-outs or symbol insertions with particular emphasis on the binary and non-binary deletion channels. We offer a different look at these channels by considering equivalent models by fragmenting the input sequence where different subsequences travel through different channels. The resulting output symbols are combined appropriately to come up with an equivalent input-output representation of the original channel which allows for derivation of new upper bounds on the channel capacity. We consider both random and deterministic types of fragmentation processes applied to binary and nonbinary deletion channels. With two specific applications of this idea, a random fragmentation applied to a binary deletion channel and a deterministic fragmentation process applied to a nonbinary deletion channel, we prove certain inequality relations among the capacities of the original channels and those of the introduced subchannels. The resulting inequalities prove useful in deriving tighter capacity upper bounds for: 1) independent identically distributed (i.i.d.) deletion channels when the deletion probability exceeds 0.65 and 2) nonbinary deletion channels. Some extensions of these results, for instance, to the case of deletion/substitution channels are also explored. © 1963-2012 IEEE.