Browsing by Subject "Memory applications"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Charge Trapping Memory with 2.85-nm Si-Nanoparticles Embedded in HfO2(ECS, 2015-05) El-Atab, N.; Turgut, Berk Berkan; Okyay, Ali Kemal; Nayfeh, A.In this work, the effect of embedding 2.85-nm Si-nanoparticles charge trapping layer in between double layers of high-κ Al2O3/HfO2 oxides is studied. Using high frequency (1 MHz) C-Vgate measurements, the memory showed a large memory window at low program/erase voltages due to the charging of the Si-nanoparticles. The analysis of the C-V characteristics shows that mixed charges are being stored in the Si-nanoparticles where electrons get stored during the program operation while holes dominate in the Si-nanoparticles during the erase operation. Moreover, the retention characteristic of the memory is studied by measuring the memory hysteresis in time. The obtained retention characteristic (35.5% charge loss in 10 years) is due to the large conduction and valence band offsets between the Si-nanoparticles and the Al2O3/HfO2 tunnel oxide. The results show that band engineering is essential in future low-power non-volatile memory devices. In addition, the results show that Si-nanoparticles are promising in memory applications.Item Open Access Cubic-phase zirconia nano-island growth using atomic layer deposition and application in low-power charge-trapping nonvolatile-memory devices(Institute of Physics Publishing Ltd., 2017) El-Atab, N.; Ulusoy, T. G.; Ghobadi, A.; Suh, J.; Islam, R.; Okyay, Ali Kemal; Saraswat, K.; Nayfeh, A.The manipulation of matter at the nanoscale enables the generation of properties in a material that would otherwise be challenging or impossible to realize in the bulk state. Here, we demonstrate growth of zirconia nano-islands using atomic layer deposition on different substrate terminations. Transmission electron microscopy and Raman measurements indicate that the nano-islands consist of nano-crystallites of the cubic-crystalline phase, which results in a higher dielectric constant (κ ∼ 35) than the amorphous phase case (κ ∼ 20). X-ray photoelectron spectroscopy measurements show that a deep quantum well is formed in the Al2O3/ZrO2/Al2O3 system, which is substantially different to that in the bulk state of zirconia and is more favorable for memory application. Finally, a memory device with a ZrO2 nano-island charge-trapping layer is fabricated, and a wide memory window of 4.5 V is obtained at a low programming voltage of 5 V due to the large dielectric constant of the islands in addition to excellent endurance and retention characteristics.